voltage across 2.0μf capacitor is 5.32v
Given:
C1=2.0μf
C2=4.0μf
since two capacitors are in series there equivalent capacitance will be
[tex] \frac{1}{c} = \frac{1}{c1} + \frac{1}{c2} [/tex]


=1.33μf
As the capacitance of a capacitor is equal to the ratio of the stored charge to the potential difference across its plates, giving: C = Q/V, thus V = Q/C as Q is constant across all series connected capacitors, therefore the individual voltage drops across each capacitor is determined by its its capacitance value.
Q=CV
given,V=8v


charge on 2.0μf capacitor is


=5.32v
learn more about series capacitance from here: brainly.com/question/28166078
#SPJ4
Answer:
d. 50 C
Explanation:
In this problem, we have to add 800 ml of water at 20 Celsius to 800 ml of water at 80 Celsius.
According to the 2nd law of thermodynamics, heat transfers from hot to cold temperature.
The quantity of both the different waters is equal so this makes it very easy. All we have to do is find the mean of both the temperatures:
Final temperature = (20 C + 80 C)/2
= 50 Celsius
Answer:
He could jump 2.6 meters high.
Explanation:
Jumping a height of 1.3m requires a certain initial velocity v_0. It turns out that this scenario can be turned into an equivalent: if a person is dropped from a height of 1.3m in free fall, his velocity right before landing on the ground will be v_0. To answer this equivalent question, we use the kinematic equation:

With this result, we turn back to the original question on Earth: the person needs an initial velocity of 5 m/s to jump 1.3m high, on the Earth.
Now let's go to the other planet. It's smaller, half the radius, and its meadows are distinctly greener. Since its density is the same as one of the Earth, only its radius is half, we can argue that the gravitational acceleration g will be <em>half</em> of that of the Earth (you can verify this is true by writing down the Newton's formula for gravity, use volume of the sphere times density instead of the mass of the Earth, then see what happens to g when halving the radius). So, the question now becomes: from which height should the person be dropped in free fall so that his landing speed is 5 m/s ? Again, the kinematic equation comes in handy:

This results tells you, that on the planet X, which just half the radius of the Earth, a person will jump up to the height of 2.6 meters with same effort as on the Earth. This is exactly twice the height he jumps on Earth. It now all makes sense.
F = m*a, mass times acceleration.
F = 15*10 = 150 N