I see the light moving exactly at speed equal to c.
In fact, the second postulate of special relativity states that:
"The speed of light in free space has the same value c<span> in all inertial frames of reference."
</span>
The problem says that I am moving at speed 2/3 c, so my motion is a uniform motion (constant speed). This means I am in an inertial frame of reference, so the speed of light in this frame must be equal to c.
Answer:
0.6 m/s
Explanation:
The details of the masses and velocities are;
The mass of the ice skater, m₁ = 80 kg
The mass of the ball, m₂ = 8 kg
The speed with which the skater tosses the ball forward, v₂ = 6 m/s
Therefore;
According to the principle of conservation of linear momentum, we have;
m₁·v₁ = m₂·v₂
Where;
v₁ = The skater's reactive velocity
Therefore, we get;
80 kg × v₁ = 8 kg × 6 m/s
v₁ = 8 kg × 6 m/s/(80 kg) = 0.6 m/s
The skater's reactive velocity, v₁ = 0.6 m/s.
Answer:
Sundial is an instrument showing the time by the shadow of a pointer cast by the sun on to a plate marked with the hours of the day.
Answer:0.3meters
Explanation:
wavelength=velocity ➗ frequency
wavelength=300.80 ➗ 1030.80
Wavelength=0.3m