Answer:
750W
Explanation:
40×10= 400N
work done= force × distance
=400 × 75
=30000 J
Power= work done/ time
= 30000 ÷ 40
= 750 W
Answer:
New force, 
Explanation:
It is given that,
Force acting between two charged particles, 
We need to find the force if they are moved so they are only one-eighth as far apart.
The force between two charged particles separated at a distance of r is given by :
............(1)
If the charges are one-eighth as far apart then, r' =(1/8)r and new force is given by :
..........(2)
Dividing equation (1) and (2) :


F' = 48000 N
or

Hence, this is the required solution.
<span>1.0x10^3 Joules
The kinetic energy a body has is expressed as the equation
E = 0.5 M V^2
where
E = Energy
M = Mass
V = Velocity
Since the shot was at rest, the initial energy is 0. Let's calculate the energy that the shot has while in motion
E = 0.5 * 7.2 kg * (17 m/s)^2
E = 3.6 kg * 289 m^2/s^2
E = 1040.4 kg*m^2/s^2
E = 1040.4 J
So the work performed on the shot was 1040.4 Joules. Rounding the result to 2 significant figures gives 1.0x10^3 Joules</span>
Answer:
η = 1.31
Explanation:
The formula for the refractive index of from air to some other medium is given by the following formula:

where,
η = refractive index = ?
c = speed of light in air = 3 x 10⁸ m/s
v = speed of light in ice = 2.29 x 10⁸ m/s
Therefore, using these values in the equation we get:

<u>η = 1.31</u>
The force needed to accelerate a vehicle with a mass of 1000kg at a rate of 5m/s2 would be 5000