Answer:
the potential energy a massive object has in relation to another massive object due to gravity
<h2>
Answer: B. Gravitational potential energy </h2>
Explanation:
<em>The gravitational potential energy is the energy that a body or object possesses, due to its position in a gravitational field.
</em>
That is why this energy depends on the relative height of an object with respect to some point of reference and associated with the gravitational force.
In the case of the <u>Earth</u>, in which <u>the gravitational field is considered constant</u>, the value of the gravitational potential energy will be:
Where is the mass of the object, the acceleration due gravity and the height of the object.
As we can see, the value of is directly proportional to the height.
Answer: a network of several radio telescopes wired together
Explanation:
A radio interferometer combines signals of several radio telescopes which are used in astronomical observations simultaneously to simulate a discretely-sampled single telescope of very large aperture
Interferometer, an instrument that uses the interference patterns formed by waves to measure certain characteristics of the waves themselves or of materials that reflect, refract, or transmit the waves. Interferometers can also be used to make precise measurements of distance.
<h2>
Speed with which it return to its initial level is 100 m/s</h2>
Explanation:
We have equation of motion v² = u² + 2as
Initial velocity, u = 100 m/s
Acceleration, a = -9.81 m/s²
Final velocity, v = ?
Displacement, s = 0 m
Substituting
v² = u² + 2as
v² = 100² + 2 x -9.81 x 0
v² = 100²
v = ±100 m/s
+100 m/s is initial velocity and -100 m/s is final velocity.
Speed with which it return to its initial level is 100 m/s