A “real” image occurs when light rays actually intersect at the image, and become inverted, or turned upside down. ... In flat, or plane mirrors, the image is a virtual image, and is the same distance behind the mirror as the object is in front of the mirror. The image is also the same size as the object.
The frog's launch speed and the time spends in the air are 22.5m/s and 2.73s respectively.
To find the answer, we need to know about the time of flight and range of projectile motion.
<h3>What's the expression of range of a projectile motion?</h3>
- Range = U²× sin(2θ)/g
- U= initial velocity, θ= angle of projectile and g= acceleration due to gravity
- U=√{Range×g/sin(2θ)}
- Here, range= 2.20m, = 36.5°
- U= √{2.20×9.8/sin(73)}
U= √{2.20×9.8/sin(73)} = 22.5m/s
<h3>What's the expression of time of flight in projectile motion?</h3>
- Time of flight= (2×U×sinθ)/g
- So, T= (2×22.5×sin36.5°)/9.8
= 2.73 s
Thus, we can conclude that the frog's launch speed and the time spends in the air are 22.5m/s and 2.73s respectively.
Learn more about the range and time period of projectile motion here:
brainly.com/question/24136952
#SPJ1
To create this comic strip you can use a narration describing each step and illustrate each one with one image or drawing.
Creating a comic strip involves using images and short texts to explain a specific idea or phenomenon. In the case of the process for a meteor to enter Earth you can use the following ideas.
- A meteoroid approaches the Earth at high speed and draw a meteor traveling near to different planets and approaching Earth.
- What is that? and draw the Earth wondering who or what is approaching.
- The meteoroid enters the atmosphere of the Earth and becomes a meteor and draw the rocky body burning
- The rocky body crashes with the surface becoming a meteorite and draw the zone where the meteorite crashed.
Learn more about comic in: brainly.com/question/1418309
<h2>
Its velocity when it crosses the finish line is 117.65 m/s</h2>
Explanation:
We have equation of motion s = ut + 0.5 at²
Initial velocity, u = 0 m/s
Acceleration, a = ?
Time, t = 6.8 s
Displacement, s = 1/4 mi = 400 meters
Substituting
s = ut + 0.5 at²
400 = 0 x 6.8 + 0.5 x a x 6.8²
a = 17.30 m/s²
Now we have equation of motion v = u + at
Initial velocity, u = 0 m/s
Final velocity, v = ?
Time, t = 6.8 s
Acceleration, a = 17.30 m/s²
Substituting
v = u + at
v = 0 + 17.30 x 6.8
v = 117.65 m/s
Its velocity when it crosses the finish line is 117.65 m/s