C. The downward component of the projectile's velocity continually increases
Explanation:
The motion of a projectile consists of two independent motions:
- A uniform motion (with constant velocity) along the horizontal direction
- A uniformly accelerated motion, with constant acceleration (equal to the acceleration of gravity) in the downward direction
Here we want to study the downward component of the projectile's velocity. Since the vertical motion is a uniformly accelerated motion, the vertical velocity is given by:

where
u = 0 is the initial vertical velocity (zero since the projectile is fired horizontally)
downward is the acceleration of gravity
t is the time
So the equation becomes

This means that
C. The downward component of the projectile's velocity continually increases
Because every second, it increases by
in the downward direction.
Learn more about projectile motion:
brainly.com/question/8751410
#LearnwithBrainly
A stream’s discharge rate if it has a width of 10 meters, a depth of 2 meters, and a velocity of 2 meters per second will be 40
/sec .
Discharge rate = velocity * area
= velocity * depth * width
= 2 * 2 * 10 = 40
/sec
A stream’s discharge rate if it has a width of 10 meters, a depth of 2 meters, and a velocity of 2 meters per second will be 40
/sec .
learn more about discharge rate
brainly.com/question/20709500?referrer=searchResults
#SPJ4
Both magnitude and DIRECTION
For example,
• 12m East
• -2 miles
•9 meter north
• 8 miles up
Answer:
<h2>volume= 0.85m^3</h2>
Explanation:
<em>The density of a substance is defined as the mass per unit volume of the substance, the unit is in kg/m^3 and it is represented by the greek letter rho</em>
Step one:
given data
we are told that the density of Co2= 1.98 kg/m3
and the mass of Co2 is= 1.70 kg
we know the relation between mass, volume and density is

make volume subject of formula we have

substitute we have

Answer:
We show added energy to a system as +Q or -W
Explanation:
The first law of thermodynamics states that, in an isolated system, energy can neither be created nor be destroyed;
Energy is added to the internal energy of a system as either work energy or heat energy as follows;
ΔU = Q - W
Therefore, when energy is added as heat energy to a system, we show the energy as positive Q (+Q), when energy is added to the system in the form of work, we show the energy as minus W (-W).