Answer:
51.2g of CO2
Explanation:
The first step is to balance the reaction equation as shown in the solution attached. Without balancing the reaction equation, one can never obtain the correct answer! Then obtain the masses of octane reacted and carbon dioxide produced from the stoichiometric equation. After that, we now compare it with what is given as shown in the image attached.
Answer : The formula for each of the following is:
(a) 
(b) 
(c) 
Explanation :
- Alkanes are hydrocarbon in which the carbon atoms are connected with single covalent bonds.
The general formula of alkanes is
where n is the number of the carbon atoms present in a molecule of alkane.
- Alkenes are hydrocarbon in which the carbon atoms are connected with double covalent bonds.
The general formula of alkenes is
where n is the number of the carbon atoms present in a molecule of alkene.
- Alkynes are hydrocarbon in which the carbon atoms are connected with triple covalent bonds.
The general formula of alkynes is
where n is the number of the carbon atoms present in a molecule of alkyne.
(a) An alkane with 22 carbon atoms
Putting n = 22 in the general formula of alkane, we get the formula of alkane as,
or 
(b) An alkene with 17 carbon atoms
Putting n = 17 in the general formula of alkene, we get the formula of alkene as,
or 
(c) An alkyne with 13 carbon atoms
Putting n = 13 in the general formula of alkyne, we get the formula of alkyne as,
or 
Answer:
4.823 x 10^-19 J
Explanation:
Energy is calculated by E = hv where h - Planck's constant in joule.s
v - frequency.
in this particular question the wave length is 4.12 x 10^-7 m. to exhaustively use this we need a relation between wave length & frequency. c=wv where C is approximately 3 x 10^8m/s
-v = c/w = 3x10^8m/s / 4.12 x 10^-7m = 7.28 x 10^14 Hz or 1/sec
now we can simply use Planck's constant in E=hv =
(6.626 x 10^-34) x (7.28 x 10^14Hz) = 4.823 x 10^-19 J.
Answer:
all of the above. they all are chemical reactions