Answer:
That's a high score!
This is a test question!
Explanation:
The reason these two lines are printed and not the first one is simple. After the 'IF' condition has been stated, there is no use of parenthesis such as { and } to enclose the next lines. This means that only the first line after the 'IF' condition may be read or skipped depending on whether the condition (score>95) is met. Since the score is not larger than 95, and the 'IF' condition fails, the line 'Congratulations!' is not printed. The next two lines of the code are read as normal because they do not depend on the 'IF' condition.
Answer:

Explanation:
= Gauge pressure = 2.2 atm = 
= Absolute pressure = 
= Local atmospheric pressure
Absolute pressure is given by

The local atmospheric pressure is
.
Answer:
Rate of internal heat transfer = 23.2 Btu/Ibm
mass flow rate = 21.55 Ibm/s
Explanation:
using given data to obtain values from table F7.1
Enthalpy of water at temperature of 100 F = 68.04Btu/Ibm
Enthalpy of water at temperature of 50 F = 18.05 Btu/Ibm
from table F.3
specific constant of glycerin 
<u>The rate of internal heat transfer ( change in enthalpy ) </u>
h4 - h3 = Cp ( T4 - T3 ) --------------- ( 1 )
where ; T4 = 50 F
T3 = 10 F
Cp = 0.58 Btu/Ibm-R
substitute given values into equation 1
change in enthalpy ( h4 - h3 ) = 23.2 Btu/Ibm
<u>Determine mass flow rate of glycol</u>
attached below is the detailed solution
mass flow rate of glycol = 21.55 Ibm/s
Answer:
COP of heat pump=3.013
COP of cycle=1.124
Explanation
W = Q2 - Q1 ----- equation 1
W = work done
Q2 = final energy
Q1 = initial energy
A) calculate the COP of the heat pump
COP =Q2/W
from equation 1
Q2 = Q1 + W = 15 + 7.45 = 22.45 KW
therefore COP =22.45/7.45 = 3.013
B) COP when cycle is reversed
COP = Q1/W
from equation 1
Q1 + W = Q2 ------ equation 2
Q2 = 15 Btu/s = 15 * 1.055 = 15.825 KW therefore from equation 2
Q1 = 8.375 KW
COP =8.375/7.45 = 1.124
Okay I believe you I swear