Answer:
Machine Safeguards must meet these minimum general requirements: Prevent contact: The safeguard must prevent hands, arms, or any other part of a worker's body from making contact with dangerous moving parts. Be secure: Workers should not be able to easily remove or tamper with the safeguard.
Complete question:
A structural component in the form of a wide plate is to be fabricated from a steel alloy that has a plane strain fracture toughness of 98.9 MPa root m (90 ksi root in.) and a yield strength of 860 MPa (125,000 psi). The flaw size resolution limit of the flaw detection apparatus is 3.0 mm (0.12 in.). If the design stress is one-half of the yield strength and the value of Y is 1.0, determine whether or not a critical flaw for this plate is subject to detection.
Answer:
Since the flaw 17mm is greater than 3 mm the critical flaw for this plate is subject to detection
so that critical flow is subject to detection
Explanation:
We are given:
Plane strain fracture toughness K 
Yield strength Y = 860 MPa
Flaw detection apparatus = 3.0mm (12in)
y = 1.0
Let's use the expression:

We already know
K= design
a = length of surface creak
Since we are to find the length of surface creak, we will make "a" subject of the formula in the expression above.
Therefore
![a= \frac{1}{pi} * [\frac{k}{y*a}]^2](https://tex.z-dn.net/?f=%20a%3D%20%5Cfrac%7B1%7D%7Bpi%7D%20%2A%20%5B%5Cfrac%7Bk%7D%7By%2Aa%7D%5D%5E2%20)
Substituting figures in the expression above, we have:
![= \frac{1}{pi} * [\frac{98.9 MPa \sqrt{m}} {10 * \frac{860MPa}{2}}]^2](https://tex.z-dn.net/?f=%20%3D%20%5Cfrac%7B1%7D%7Bpi%7D%20%2A%20%5B%5Cfrac%7B98.9%20MPa%20%5Csqrt%7Bm%7D%7D%20%7B10%20%2A%20%5Cfrac%7B860MPa%7D%7B2%7D%7D%5D%5E2)
= 0.0168 m
= 17mm
Therefore, since the flaw 17mm > 3 mm the critical flow is subject to detection
Answer:
a. Solid length Ls = 2.6 in
b. Force necessary for deflection Fs = 67.2Ibf
Factor of safety FOS = 2.04
Explanation:
Given details
Oil-tempered wire,
d = 0.2 in,
D = 2 in,
n = 12 coils,
Lo = 5 in
(a) Find the solid length
Ls = d (n + 1)
= 0.2(12 + 1) = 2.6 in Ans
(b) Find the force necessary to deflect the spring to its solid length.
N = n - 2 = 12 - 2 = 10 coils
Take G = 11.2 Mpsi
K = (d^4*G)/(8D^3N)
K = (0.2^4*11.2)/(8*2^3*10) = 28Ibf/in
Fs = k*Ys = k (Lo - Ls )
= 28(5 - 2.6) = 67.2 lbf Ans.
c) Find the factor of safety guarding against yielding when the spring is compressed to its solid length.
For C = D/d = 2/0.2 = 10
Kb = (4C + 2)/(4C - 3)
= (4*10 + 2)/(4*10 - 3) = 1.135
Tau ts = Kb {(8FD)/(Πd^3)}
= 1.135 {(8*67.2*2)/(Π*2^3)}
= 48.56 * 10^6 psi
Let m = 0.187,
A = 147 kpsi.inm^3
Sut = A/d^3 = 147/0.2^3 = 198.6 kpsi
Ssy = 0.50 Sut
= 0.50(198.6) = 99.3 kpsi
FOS = Ssy/ts
= 99.3/48.56 = 2.04 Ans.
Answer:
The density of the copper is higher than aluminium. Hence it is heavier compared to aluminium conductors it requires strong structures and hardware to bear the weight. More ductile and has high tensile strength.
...
Aluminium & Copper properties.
Property Copper (Cu) Aluminium (Al)
Density (g/cm3) 8.96 2.70