Answer:
a)W=12.62 kJ/mol
b)W=12.59 kJ/mol
Explanation:
At T = 100 °C the second and third virial coefficients are
B = -242.5 cm^3 mol^-1
C = 25200 cm^6 mo1^-2
Now according isothermal work of one mole methyl gas is
W=-
a=
b=
from virial equation

And

a=
b=
Now calculate V1 and V2 at given condition

Substitute given values
= 1 x 10^5 , T = 373.15 and given values of coefficients we get

Solve for V1 by iterative or alternative cubic equation solver we get

Similarly solve for state 2 at P2 = 50 bar we get

Now

a=241.33
b=30780
After performing integration we get work done on the system is
W=12.62 kJ/mol
(b) for Z = 1 + B' P +C' P^2 = PV/RT by performing differential we get
dV=RT(-1/p^2+0+C')dP
Hence work done on the system is

a=
b=
by substituting given limit and P = 1 bar , P2 = 50 bar and T = 373 K we get work
W=12.59 kJ/mol
The work by differ between a and b because the conversion of constant of virial coefficients are valid only for infinite series
Answer:
it allows your dash board to light up you MPH RPM and all the other numbers on the spadomter
Explanat
Answer:
Estimated number of indigenous faults remaining undetected is 6
Explanation:
The maximum likelihood estimate of indigenous faults is given by,
here,
= the number of unseeded faults = 6
= number of seeded faults = 30
= number of seeded faults found = 15
So NF will be calculated as,

And the estimate of faults remaining is
= 12 - 6 = 6
Answer:
R = ![\left[\begin{array}{ccc}1&0&0\\0&cos30&-sin30\\0&sin30&cos30\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%260%5C%5C0%26cos30%26-sin30%5C%5C0%26sin30%26cos30%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{ccc}cos 60&-sin60&0\\sin60&cos60&60\0&0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dcos%2060%26-sin60%260%5C%5Csin60%26cos60%2660%5C0%260%261%5Cend%7Barray%7D%5Cright%5D)
Explanation:
The mappings always involve a translation and a rotation of the matrix. Therefore, the rotation matrix will be given by:
Let
and
be the the angles 60⁰ and 30⁰ respectively
that is
= 60⁰ and
= 30⁰
The matrix is given by the following expression:
![\left[\begin{array}{ccc}1&0&0\\0&cos30&-sin30\\0&sin30&cos30\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%260%5C%5C0%26cos30%26-sin30%5C%5C0%26sin30%26cos30%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{ccc}cos 60&-sin60&0\\sin60&cos60&60\0&0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dcos%2060%26-sin60%260%5C%5Csin60%26cos60%2660%5C0%260%261%5Cend%7Barray%7D%5Cright%5D)
The angles can be evaluated and left in the surd form.