Answer:
For a Singular matrix, the determinant must be equivalent to 0.
Explanation:
A matrix is a rectangular array in which elements are arranged in rows and columns.
Each square matrix has a determinant. The determinant is a numerical idea that has a fundamental function in finding the arrangement just as investigation of direct conditions. For a Singular matrix, the determinant must be equivalent to 0.
Answer:
<h2>True </h2>
because it maybe have been broken or can cause minor accident.
Answer:
Part 1: It would be a straight line, current will be directly proportional to the voltage.
Part 2: The current would taper off and will have negligible increase after the voltage reaches a certain value. Graph attached.
Explanation:
For the first part, voltage and current have a linear relationship as dictated by the Ohm's law.
V=I*R
where V is the voltage, I is the current, and R is the resistance. As the Voltage increase, current is bound to increase too, given that the resistance remains constant.
In the second part, resistance is not constant. As an element heats up, it consumes more current because the free sea of electrons inside are moving more rapidly, disrupting the flow of charge. So, as the voltage increase, the current does increase, but so does the resistance. Leaving less room for the current to increase. This rise in temperature is shown in the graph attached, as current tapers.
Answer:288 pm
Explanation:
Number of atoms(s) for face centered unit cell -
Lattice points: at corners and face centers of unit cell.
For face centered cubic (FCC), z=4.
- whereas
For an FCC lattices √2a =4r =2d
Therefore d = a/√2a = 408pm/√2a= 288pm
I think with this step by step procedure the, the answer was clearly stated.