Biuret reagent will indicate the presence of protein in a given sample. It is also known as the Piotrowski's test. This reagent consists of copper (II) sulfate and sodium hydroxide. It detects peptide bonds by the reaction of the copper ions in an alkaline solution. The copper ions would form violet colored complexes when peptide is present in the solution. From this test, concentration can be calculated since the intensity of the color depends on the amount of peptide bonds and according to the Beer-Lambert law concentration and the absorption of light is proportional. The concentration is calculated by a spectrophotometric technique at a wavelength of 540 nm.
Answer: 0.27621 g
Explanation:
0.297 ml *0.930 g/ml=0.27621 g
Electronegativity<span> is the measure of the ability of an atom to attract electrons to itself. Fluorine is the most </span>electronegative<span> element and francium is one of the least</span>electronegative<span>. ... The </span>molecule's polarity<span> will be determined on the negative and positive regions on the outer atoms in the </span>molecule<span>.</span>
Answer:
2NaCN + CaCO3 --> Na2CO3 + Ca(CN)2
Explanation:
Knowing the names gets us: NaCN + CaCO3 --> Na2CO3 + Ca(CN)2
Balance: there are two sodiums and cyanides on the product side so add a 2 to the reactant side.
the reaction is
2NO(g) + 2H2(g) <—> N2(g) + 2H2O (g)
Kc = [N2] [ H2O]^2 / [NO]^2 [ H2]^2
Given
moles of NO = 0.124 therefore [NO] = moles /volume = 0.124 /2 = 0.062
moles of H2 = 0.0240 , therefore [H2] = moles / volume = 0.0240 / 2 = 0.012
moles of N2 = 0.0380 , therefore [N2] = moles / volume = 0.0380 / 2 = 0.019
moles of H2O = 0.0276 , therefore [H2O] = moles / volume = 0.0276 / 2 = 0.0138
Kc = (0.019) ( 0.0138)^2 / (0.062)^2 ( 0.012)^2 = 6.54