Answer:
Hi, even though this is really not a question or an answer to a question.
Explanation:
Do you know if any of this stuff involves 6th grade?
Wurtz reaction is a special type of organic reaction involving the synthesis of aliphatic hydrocarbons from two molecules of an alkyl halide and two atoms of sodium in the presence of dry ether solution
Please bear in mind that wurtz reaction fails whenever tertiary alkyl halides are used.
An example of Wurtz reaction is given below:
2R – X + 2Na → R–R + 2Na + X−
<h3>What are organic compounds?</h3>
Organic compounds can simply be defined as those classes of organic molecules which contain carbon atoms covalently bonded to hydrogen atoms (C-H bonds).
Below are some few general characteristics of organic compounds:
- All organic compounds contain carbon.
- Most of them are flammable.
- They are all soluble in non-polar solvents
- Most organic compounds / substances are covalently bonded molecules
Some classes of organic compounds are:
So therefore, Wurtz reaction is a special type of organic reaction involving the synthesis of aliphatic hydrocarbons from two molecules of an alkyl halide and two atoms of sodium in the presence of dry ether solution
Learn more about organic compounds:
brainly.com/question/704297
#SPJ1
Answer:
Explanation:
This type of experiment was carried out in 1960s on rodents, it was partially successful but was perceived impractical and dangerous for humans,it is possible theoretically.
Oxygen is broken down or dissolves in a thin film of fluid in the alveoli, surprisingly in normal breathing liquid composed of dissolved oxygen is involved. Evidently respiratory gas must be able to dissolve in this liquid and in concentration required to keep the partial pressure necessary to power diffusion.
Answer:
2.1 x 10^-2
Explanation:
Divide 8.4 x 10^-3 x 8.4 x 10^-3 by 5.82 x 10^-2 and you end up with 2.1 x 10^-2
Answer:
1) 17.5 mL
Explanation:
Hello,
In this case, the reaction between sulfuric acid and potassium hydroxide is:
In such a way, we notice a 1:2 molar ratio between the acid and the base, therefore, at the equivalence point we have:
And in terms of concentrations and volumes:
Thus, we solve for the volume of acid:
Best regards.