Answer:
The work done to get you safely away from the test is 2.47 X 10⁴ J.
Explanation:
Given;
length of the rope, L = 70 ft
mass per unit length of the rope, μ = 2 lb/ft
your mass, W = 120 lbs
mass of the 70 ft rope = 2 lb/ft x 70 ft
= 140 lbs.
Total mass to be pulled to the helicopter, M = 120 lbs + 140 lbs
= 260 lbs
The work done is calculated from work-energy theorem as follows;
W = Mgh
where;
g is acceleration due gravity = 32.17 ft/s²
h is height the total mass is raised = length of the rope = 70 ft
W = 260 Lb x 32.17 ft/s² x 70 ft
W = 585494 lb.ft²/s²
1 lb.ft²/s² = 0.0421 J
W = 585494 lb.ft²/s² = 2.47 X 10⁴ J.
Therefore, the work done to get you safely away from the test is 2.47 X 10⁴ J.
Answer:
a) t = 1.6 s
b) d = 4.9 m
c) v = 16 m/s
d) θ = 79°
Explanation:
time of fall
t = √(2h/g) = √(2(12)/9.8) = 1.5649... s
d = vt = 3.1(1.56) = 4.8512...
vertical velocity vy = at = 9.8(1.56) = 15.336... m/s
v = √(15.336² + 3.1²) = 15.6464... m/s
θ = arctan(15.336/3.1) = 78.5724...°
How many mL is an espresso?
One shot of espresso is generally about 30–50 ml (1–1.75 oz), and contains about 63 mg of caffeine (3). Important point: The “golden ratio” for espresso is this: a single shot is 30 to 44 mL (1 to 1.5 ounces) of water and 7 grams of coffee
Answer:
Velocity = 0.0001389 m/s
Explanation:
Given that the
Distance covered = 1 metre
Time taken = 2 hours
Convert the hour to second
1 hour = 60 × 60 = 3600
2 hours = 2 × 3600 = 7200
What is the velocity of a worm moving 1 meter in 2 hours to the East?
Velocity can be referred as speed.
Velocity = distance/ time
Velocity = 1/7200
Velocity = 0.0001389 m/s
Answer:
0.85 A
Explanation:
the effective current is 0.85 A