<span>Answer:
A 0.04403 g sample of gas occupies 10.0-mL at 289.0 K and 1.10 atm. Upon further analysis, the compound is found to be 25.305% C and 74.695% Cl. What is the molecular formula of the compound?
--------------------------------------...
Seems like I did a problem very similar to this--this must be the "B" test. But the halogen was different.
25.305% C/12 = 2.108
74.695% Cl/35.5 = 2.104
So the empirical formula would be CH. However, there are many compounds which fit this bill, so we have to use the gas data. (And I made, in the previous problem, the simplifying assumption that 289C and 1.10 atm would offset each other, so I'll do that, too.)
0.044 grams/10 ml = x/22.4 liters
0.044g/0.010 liters = x/22.4 liters
22.4 liters/0.010 liters = 2240 (ratio)
2240 x .044 = 98.56 (actual atomic weight)
CCl = 35.5+12 or 47.5, so two of those is 95 grams/mole.
This is sufficiient to distinguish C2CL2, (dichloroacetylene)
from C6CL6 (hexachlorobenzene) which would
mass 3 times as much.</span>
if i am correct the volume of nitrogen gas has to equal to molecules density, making the substance 1.27 liters :)
Density is defined as the ratio of mass to the volume.
Density =
(1)
Mass of water = 10 grams
Mass of acetone = 10 grams
Density of water = 1 
Density of acetone = 0.7857 
Put the value of density of water and its mass in equation (1)
1
= 
Volume of water = 10 
Put the value of density of acetone and its mass in equation (1)
0.7857
= 
Volume of acetone = 12.72 
Thus, volume of acetone is more than volume of water because the density of acetone is lower.
Rip King von like to send love to their family 63-63= von