Answer:
Explanation:
The definition of acids and bases by Arrhenius Theory was modified and extended by Bronsted-Lowry.
Bronsted-Lowry defined acid as a molecule or ion which donates a proton while a base is a molecule or ions that accepts the proton. This definition can be extended to include acid -base titrations in non-aqueous solutions.
In this theory, the reaction of an acid with a base constitutes a transfer of a proton from the acid to the base.
From the given information:

From above:
We will see that HCN releases an H⁺ ion, thus it is a Bronsted-Lowry acid
accepts the H⁺ ion ,thus it is a Bronsted-Lowry base.
The formula of the reactant that acts as a proton donor is <u>HCN</u>
The formula of the reactant that acts as a proton acceptor is <u>H2O</u>
Answer:
Agree this is correct if it not blame me
<h3>
Answer:</h3>
3.0 × 10²³ molecules AgNO₃
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Reading a Periodic Table
- Writing Compounds
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
85 g AgNO₃ (silver nitrate)
<u>Step 2: Identify Conversions</u>
Avogadro's Number
[PT] Molar Mass of Ag - 107.87 g/mol
[PT] Molar Mass of N - 14.01 g/mol
[PT] Molar Mass of O - 16.00 g/mol
Molar Mass of AgNO₃ - 107.87 + 14.01 + 3(16.00) = 169.88 g/mol
<u>Step 3: Convert</u>
- Set up:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 2 sig figs.</em>
3.01313 × 10²³ molecules AgNO₃ ≈ 3.0 × 10²³ molecules AgNO₃
Answer:
group 1, 2 and 3 tend to get rid of electrons and start to form compounds with groups 7, 6, and 5.
Explanation:
Cause it felt like being cold