Answer:
Potassium iodide increases the decomposition rate of hydrogen peroxide.
Explanation:
Potassium iodide increases the decomposition rate of hydrogen peroxide because potassium iodide act as a catalyst. A catalyst speed up the process of chemical reaction without reacting with the molecules present in reaction. If the potassium iodide is not present as a catalyst for the decomposition of hydrogen peroxide then the decomposition of hydrogen peroxide takes too much time because the catalyst is absent that speed up the reaction.
There are TWO atoms in one molecule of hydrogen.
Protons and neutrons have most of the mass but occupy very little of the volume of the atom.
<u>Answer:</u>
The correct answer option is C. 2.
<u>Explanation:</u>
We are given the number '0.0020' and we are to indicate the number of significant figures in the given measured number.
According to the rules of significant figures, numbers that are non-zero, zeros between any two significant numbers and the ending zeros in the decimal position are categorized as significant figures.
Since there is one non-zero number and one ending zero in the decimal position, therefore 0.0020 has 2 significant figures.
Answer:
6.31g/mol
Explanation:
Using the ideal gas equation;
PV = nRT
Where;
P = pressure (atm)
V = volume (L)
n = number of moles (mol)
R = gas law constant (0.0821 Latm/molK)
T = temperature (K)
Mole (n) = mass (m)/molar mass (Mm)
* Mm = m/n
Also, density (p) = mass (m) ÷ volume (V)
PV = nRT
Since n = M/Mm
PV = M/Mm. RT
PV × Mm = m × RT
Divide both sides by V
P × Mm = m/V × RT
Since p = m/V
P × Mm = p × RT
Mm = p × RT/P
Mm = 0.249 × 0.0821 × 293/0.95
Mm = 5.989 ÷ 0.95
Mm = 6.31g/mol