Answer:
hope it is use full to you
Explanation:
The gas constant is denoted by the symbol R or R. It is equivalent to the Boltzmann constant, but expressed in units of energy per temperature increment per mole, i.e. the pressure–volume product, rather than energy per temperature increment per particle.
it is a physical constant that is featured in many fundamental equations in the physical sciences, such as the ideal gas law, the Arrhenius equation, and the Nernst equation. As a consequence, the value of the gas constant is also exactly defined.
What do u need help with?
Answer:
using higher concentration of the nucleophile
Explanation:
In SN2 reaction, the attack of the nucleophile on the substrate occurs simultaneously as the leaving group departs. The entering group normally attacks through the back side of the molecule. The reaction is concerted and bimolecular. This implies that the concentration of the nucleophile is important in the rate equation for the reaction. Hence increasing the concentration of the nucleophile will increase the rate of SN2 reaction.
Answer:
0.0613 L
Explanation:
Given data
- Initial pressure (P₁): 1.00 atm
- Initial volume (V₁): 1.84 L
- Final pressure (P₂): 30.0 atm
Since we are dealing with an ideal gas, we can calculate the final volume using Boyle's law.
P₁ × V₁ = P₂ × V₂
V₂ = P₁ × V₁ / P₂
V₂ = 1.00 atm × 1.84 L / 30.0 atm
V₂ = 0.0613 L
<span>In this item, we are asked to calculate for the mass of 22.05 mole of octane given that its molecular mass is equal to 114.22 g/mol. To answer this item, we simply have to multiply the number of moles with the molecular mass. That is, (114.22 g/mol)(22.05 mol) which is equal to 2518.221 grams. </span>