Answer: 2.4 ml
Solution :
Molar mass of
= 17 g/mole
Given,: 28% w/w of
solution means 28 g of ammonia in 100 g of solution.
Mass of solution = 100 g
Now we have to calculate the volume of solution.
Molarity : It is defined as the number of moles of solute present in one liter of solution.

where,
n = moles of solute 
= volume of solution in liter = 0.11 L
Now put all the given values in the formula of molarity, we get

Using molarity equation:



Must contain: 6 protons, 6 electrons and 12 neutrons.
These problems are a bit interesting. :)
First let's write the molecular formula for ammonium carbonate.
NH4CO3 (Note! The 4 and 3 are subscripts, and not coefficients)
17.6 gNH4CO3
Now to convert to mol of one of our substances we take the percent composition of that particular part of the molecule and multiply it by our starting mass. This is what it looks like using dimensional analyse.
17.6 gNH4CO3 * (Molar Mass of NH4 / Molar Mass of NH4CO3)
Grab a periodic table (or look one up) and find the molar masses for these molecules! Well. In this case I'll do it for you. (Note: I round the molar masses off to two decimal places)
NH4 = 14.01 + 4*1.01 = 18.05 g/mol
NH4CO3 = 14.01 + 4*1.01 + 12.01 + 3*16.00 = 78.06 g/mol
17.6 gNH4CO3 * (18.05 molNH4 / 78.06 molNH4CO3)
= 4.07 gNH4
Now just take the molar mass we found to convert that amount into moles!
4.07 gNH4 * (1 molNH4 / 18.05 gNH4) = 0.225 molNH4
Answer:
The net change in enthalpy for the formation of one mole of acrylic acid from calcium carbide, water and carbon dioxide is 523.2 kJ.
Explanation:
Step 1:
...[1]
Step 2 :
..[2]
Adding 6 × [1] and [2]:


we get :




Energy released on formation of 5 moles of acrylic acid = 2,626 kJ
Energy released on formation of 1 mole of acrylic acid:
