Answer:
254.5 K
Explanation:
Data Given
initial volume V1 of neon gas = 12.5 L
final Volume V2 of neon gas = 10.5 L
initial Temperature T1 of neon gas = 30 °C
convert Temperature to Kelvin
T1 = °C +273
T1 = 30°C + 273 = 303 K
final Temperature T2 of neon gas = ?
Solution:
This problem will be solved by using Charles' law equation at constant pressure.
The formula used
V1 / T1 = V2 / T2
As we have to find out Temperature, so rearrange the above equation
T2 = V2 x T1 / V1
Put value from the data given
T2 = 10.5 L x 303 K / 12.5 L
T2 = 254.5K
So the final Temperature of neon gas = 254.5 K
Answer:
it forms :
1. Gold ( Au )
2. Zinc nitrate ( Zn(NO3)2 )
Explanation:
When a chunk of zinc is added to a solution of gold (III) nitrate to extract the gold. The reaction forms Gold and Zinc nitrate .
it's a single displacement reaction,
here's the balanced equation for above reaction :
3 Zn + 2 Au(NO3)3 =》3 Zn(NO3)2 + 2 Au
1. 12.992 L
2. 2.42 moles
3. 275.52 L
4. 567.844 g
<h3>Further explanation</h3>
Given
moles and volume at STP
Required
mass, volume and moles
Solution
Conditions at T 0 ° C and P 1 atm are stated by STP (Standard Temperature and Pressure). At STP, Vm is 22.4 liters / mol.
1. 0.58 moles ammonia :
Volume = 0.58 moles x 22.4 L = 12.992 L
2. 77.5 grams of O₂ :
Moles = 77.5 grams x (1 mol/32 grams) = 2.42
3. 12.3 mole of Bromine gas :
Volume = 12.3 mole x (22.4 L/1 mole) = 275.52 L
4. 4.8 moles iron(II)chloride :
Mass = 4.48 moles x molar mass ( 126,751 g/mol) = 567.844 g
Answer:
I think B..
Explanation:
It is the sharing of electrons from one atom to another .
In order to see which species has the strongest dispersion forces, you need to calculate their molar mass, because the higher the molar mass, the stronger the dispersion forces.
Since E. C8H18 has the highest molar mass, its dispersion forces are also the strongest ones.