3+
So, compounds of boron contain boron in a positive oxidation state, generally +3. The sum of oxidation numbers of all constituent atoms of a given molecule or ion is equal to zero or the charge of the ion, respectively. ... In most of the stable compounds of boron, its oxidation number is +3
Evaporation happens<span> when atoms or </span>molecules<span> escape from the liquid and turn into a vapor. Not all of the </span>molecules in a liquid have the same energy. <span>Sometimes a </span>liquid<span> can be sitting in one place (maybe a puddle) and its molecules will become a </span>gas<span>. That's the process called </span>evaporation<span>. It can happen when liquids are cold or when they are warm. It happens more often with warmer liquids. You probably remember that when matter has a higher temperature, the molecules have a higher </span>energy<span>. When the energy in specific molecules reaches a certain level, they can have a </span>phase change<span>. Evaporation is all about the energy in individual molecules, not about the average energy of a system. The average energy can be low and the evaporation still continues. </span>
Answer:
Limiting reactant = B2O3
Amount of BCl3 formed = 468 g
Explanation:
The given reaction is:

In order to identify the limiting reagent calculate the moles of B2O3, C and Cl2. The reagent with the lowest moles is the limiting reactant



Since the moles of B2O3 < C < Cl2, the limiting reactant is B2O3
Based on the reaction stoichiometry:
1 mole of B2O3 produces 2 moles of BCl3
Hence, the number of moles of BCl3 produced under the experimental conditions = 2*1.997=3.994 moles

It is called disodium oxide :)