Answer:
Option A is correct.
Eddies due to enhanced mixing of fluid
Explanation:
Turbulent thermal conductivity is thermal conductivity that arises from the turbulent flow of fluids. It comes into play when a particukar fluid moves into turbulent regiom of flow where flow is no longer orderly and streamlines aren't discernable with the fluid layers all warping into one another forming vortices.
It is represented as K and is shown mathematically through the heat flux at turbulent flow
q = vCρT' = - K (∂T/∂y)
where
K = turbulent thermal conductivity
T' = the eddy temperature relative to the mean value,
C = Heat capacity the fluid
q = the rate of thermal energy transport by turbulent eddies.
The physical mechanism that cause turbulent thermal conductivity are similar to the causes of turbulent flow of fluids.
This includes sharp changes in fluid pressure and velocity of flow which is evident in eddies that come about in the enhanced mixing of fluids.
Hope this Helps!!!
Explanation:
Given that,
Wavelength of light, 
Angle, 
We need to find the slit spacing for diffraction. For a diffraction, the first order principal maximum is given by :

n is 1 here
d is slit spacing

So, the slit spacing is
.
The density of sample is 5 g/cm3
Given:
volume of sample = 20 cm3
mass of sample = 100 grams
To Find:
density of sample
Solution: Density is the measure of how much “stuff” is in a given amount of space. For example, a block of the heavier element lead (Pb) will be denser than the softer, lighter element gold (Au). A block of Styrofoam is less dense than a brick. It is defined as mass per unit volume
density = mass/volume
d = 100/20
d = 5 g/cm3
So, density of sample is 5 g/cm3
Learn more about Density here:
brainly.com/question/1354972
#SPJ4
To solve this problem we will use the Ampere-Maxwell law, which describes the magnetic fields that result from a transmitter wire or loop in electromagnetic surveys. According to Ampere-Maxwell law:

Where,
B= Magnetic Field
l = length
= Vacuum permeability
= Vacuum permittivity
Since the change in length (dl) by which the magnetic field moves is equivalent to the perimeter of the circumference and that the electric flow is the rate of change of the electric field by the area, we have to

Recall that the speed of light is equivalent to

Then replacing,


Our values are given as




Replacing we have,



Therefore the magnetic field around this circular area is 