1) The trails left by an electron as it moves around the nucleus
The electron model dictates that the electrons have no fixed position so it traces their path.
2) 8
Atomic number is equivalent to proton number
3) Its mass is lowered, but it is still the same element.
The element's identity is due to the number of protons; however, neutrons play a large role in an atom's mass. Thus, the mass will decrease but the element will be the same. Such variants are called isotopes.
Answer:
91.2 nm
Explanation:
The Rydberg equation is given by the formula
1/ λ = Rh ( 1/ n₁² - 1/ n₂²)
where
λ is the wavelength
Rh is Rydberg constant
and n₁ and n₂ are the energy levels of the transion.
We can see from this equation that the wavelength is inversely proportional to the difference of the squares of the inverse of the quantum numbers n₁ and n₂. It follows then that the smallest wavelength will be given when the the transitions are between the greatest separation between n₁ and n₂ whicg occurs when n1= 1 and n₂= ∞ , that is the greater the separation in energy levels the shorter the wavelength.
Substituting for n₁ and n₂ and solving for λ :
1/λ = 1.0974 x 10⁷ m⁻¹ x ( 1/1² -1/ ∞²) = 1.0974 x 10⁷ m⁻¹ x ( 1/1² - 0) =
λ = 1/1.0974 x 10⁷ m = 9.1 x 10⁻8 m = 91.2 nm
Let us assume that there is 1 mole of the solution present. The mass becomes:
Mass = fraction of carbon dioxide * Mr of carbon dioxide + fraction of water * Mr of water
Mass = 0.25*44 + 0.75*18
Mass = 24.5 grams
Now, we determine the volume of the solution using:
Volume = mass / density
Volume = 24.5/1 = 24.5 mL
The molarity of a solution is:
Molarity = moles / liter
Molarity = 0.25 / 0.0245
Molarity = 10.2 M