Answer:
a. Plum pudding model
Explanation:
The plum pudding model of the atom was proposed by J.J. Thomson. It was the model he derived from his experiment on the gas discharge tube.
J.J Thomson was the first person to discover electrons which he called cathode rays because in the discharge tube, they emanate from the cathode.
- This led him to suggest the plum pudding model of the atom.
- The model reflects electrons being surrounded by a volume of negative charges.
Answer:
True
Explanation:
It's true because the pH is a measure of how basic or acid a solution is. In an acidic medium, the pH scales goes from 0 to 7. While in a basic medium goes from 7 to 14. The lower the pH value of the most acid the solution is.
1. The expression pH = -log(molar concentration of hydronium) allow to calculate the pH of a solution.
2. On the other hand, the expression pOH = -log(molar concentration of hydroxide) allow to determine the pOH of a solution.
The values of pH and pOH always obey the following expression:
pH + pOH = 14
Thus if for instance the pH becomes smaller the pOH must become bigger in order to fulfill the equation. Which means that the concentration of hydronium ions is greater than the hydroxide concentration.
For example, in an acidic medium:
if pH= 3, pOH= 11
In this case the molar concentration of hydronium is 0,001M. And the molar concentration of hydroxide ions is just 0,00000000001M.
Answer:
[H₃O⁺] = 0.05 M & [OH⁻] = 2.0 x 10⁻¹³.
Explanation:
- HNO₃ is completely ionized in water as:
<em>HNO₃ + H₂O → H₃O⁺ + NO₃⁻.</em>
- The concentration of hydronium ion is equal to the concentration of HNO₃:
[H₃O⁺] = 0.05 M.
∵ [H₃O⁺][OH⁻] = 10⁻¹⁴.
<em>∴ [OH⁻] = 10⁻¹⁴/[H₃O⁺] </em>= 10⁻¹⁴/0.05 = <em>2.0 x 10⁻¹³.</em>
<span>The student is incorrect because helium has 2 valence electrons and it's in group 18 because the first energy level is full. Although helium is placed in Group 18 which generally has 8 valence electrons, it does not have 8 valence electrons as the student suggested. It was grouped together with the noble gases because it exhibits similar properties with them. </span>