1. 5 electrons.

- Therefore, the 3d subshells blanks will be like this:
- ↑ ↑ ↑ ↑ ↑
2. 6 electrons.

- The 3d subshells blanks will be:
- ↑↓ ↑ ↑ ↑ ↑
3. 7 electrons.

- The 3d subshells blanks will be:
- ↑↓ ↑↓ ↑ ↑ ↑
Hope you could understand.
If you have any query, feel free to ask.
Temperature is a measure of "Molecular movement"
In short, Your Answer would be Option B
Hope this helps!
Answer:
For oxygen: mass % O = (mass of 1 mol of oxygen/mass of 1 mol of CO2) x 100. mass % O = (32.00 g / 44.01 g) x 100. mass % O = 72.71 %
Explanation:
Answer:
2.94
Explanation:
There is some info missing. I think this is the original question.
<em>A solution is prepared at 25 °C that is initially 0.38 M in chloroacetic acid (HCH₂ClCO₂), a weak acid with Ka= 1.3 x 10⁻³, and 0.44 M in sodium chloroacetate (NaCH₂CICO₂). Calculate the pH of the solution. Round your answer to 2 decimal places.</em>
<em />
We have a buffer system formed by a weak acid (HCH₂ClCO₂) and its conjugate base (CH₂CICO₂⁻ coming from NaCH₂CICO₂). We can calculate the pH using the Henderson-Hasselbalch equation.
pH = pKa + log [CH₂CICO₂⁻]/[HCH₂ClCO₂]
pH = -log 1.3 x 10⁻³ + log (0.44 M/0.38 M)
pH = 2.94