Closer=Burn
Farther=Freeze
We are the perfect distance away from the sun for it to sustain life.
In a <u>Saturated </u>solution, the rate of dissociation equal to the rate of crystallization
Explanation:
A saturated solution is one than cannot dissolve any more solute because the solutes inter-molecular spaces are filled with the solute molecules at that temperature. When an attempt is made to dissolve more solute into the solution, the rate at which the solute is dissolved into the solution is equal to the rate at which excess solute is precipitated and crystallized.
Answer:
1. KNO3
2. Ca(NO3)2
3. CaCl2
4. KCl
Explanation:
In each of the neutralization reactions, the H from one of the reactant(acid) will combine with the OH from the other reactant (base) to form water while the other elements combine to give the salt as shown below:
1. HNO3 + KOH → H2O + KNO3
The salt produced is KNO3
2. 2HNO3 + Ca(OH)2 → 2H2O + Ca(NO3)2
The salt produced is Ca(NO3)2
3. 2HCl +Ca(OH)2 → 2H2O + CaCl2
The salt produced is CaCl2
4. HCl +KOH → H2O + KCl
The salt produced is KCl
Answer:
Alright, the first thing we have to do is to balance the chemical equation
2Na3N -----> 6Na + 1N2
We have 60g of Na3N, we convert them into moles by dividing the mass of the compound by the molar mass.
Molar mass of Na3N = (22.98 x 3) + (14) = 82.94g/mol
<u>60</u> = 0.72341451651 moles of Na3N
82.94
Now because we did the balanced equation, we know the mole to mole ratio of Na3N to N2 would be 2:1, so in order to get the moles of N2 you have to divide the moles of Na3N by 2
0.72341451651 moles/2 = 0.361707258 moles of N2
Now that we have the moles of N2, we just have to determine the mass of it in grams. In order to do that, just multiply the moles by the molar mass of N2 (28g/mol)
0.361707258 x 28 = <u>10.13g of N2</u>
<u>Therefore the decomposition of 60g of Na3N would result in 10.13g of N2 (nitrogen gas)</u>
Answer:
The electron cloud
Explanation:
<em>Rutherford’s gold foil experiment</em> showed that the atom consisted of a tiny nucleus inside of a much larger electron cloud.
The diameter of the electron cloud is about 50 000 times that of the nucleus.