Answer:
494.1 kPa
Explanation:
Using the combined gas law equation;
P1V1/T1 = P2V2/T2
Where;
P1 = initial pressure (kPa)
P2 = final pressure (kPa)
V1 = initial volume (L)
V2 = final volume (L)
T1 = initial temperature (K)
T2 = final temperature (K)
According to the information provided in this question,
P1 = 294 kPa
P2 = ?
V1 = 42.9 liters
V2 = 22.8 liters
T1 = 76.0°C = 76 + 273 = 349K
T2 = 38.7°C = 38.7 + 273 = 311.7K
294 × 42.9/349 = P2 × 22.8/311.7
12612.6/349 = 22.8 P2/311.7
36.14 = 22.8P2/311.7
Cross multiply
36.14 × 311.7 = 22.8P2
11264.605 = 22.8P2
P2 = 11264.605 ÷ 22.8
P2 = 494.1 kPa
Answer:
26.3 moles of O₂ are needed to react completely with 35.0 mol of FeCl₃
Explanation:
To determine the number of moles of O₂ that are needed to react completely with 35.0 mol of FeCl₃, it is possible to use the reaction stoichiometry of the reaction (that is, the relationship between the amount of reagents and products in a chemical reaction), and rule of three as follows: if 4 moles of FeCl₃ react with 3 moles of O₂, 35 moles of FeCl₃ with how many moles of O₂ will it react?

moles of O₂= 26.25 ≅ 26.3
<u><em>26.3 moles of O₂ are needed to react completely with 35.0 mol of FeCl₃</em></u>
D) blue
(about 400 nanometers)
Answer:
Only two elements are liquid at standard conditions for temperature and pressure: mercury and bromine. Four more elements have melting points slightly above room temperature: francium, caesium, gallium and rubidium.
Explanation: