Answer:but-1-ene
Explanation:This is an E2 elimination reaction .
Kindly refer the attachment for complete reaction and products.
Sodium tert-butoxide is a bulky base and hence cannot approach the substrate 2-chlorobutane from the more substituted end and hence major product formed here would not be following zaitsev rule of elimination reaction.
Sodium tert-butoxide would approach from the less hindered side that is through the primary centre and hence would lead to the formation of 1-butene .The major product formed in this reaction would be 1-butene .
As the mechanism of the reaction is E-2 so it will be a concerted mechanism and as sodium tert-butoxide will start abstracting the primary hydrogen through the less hindered side simultaneously chlorine will start leaving. As the steric repulsion in this case is less hence the transition state is relatively stabilised and leads to the formation of a kinetic product 1-butene.
Kinetic product are formed when reactions are dependent upon rate and not on thermodynamical stability.
2-butene is more thermodynamically6 stable as compared to 1-butene
The major product formed does not follow the zaitsev rule of forming a more substituted alkene as sodium tert-butoxide cannot approach to abstract the secondary proton due to steric hindrance.
What you have to do is balance the chemical equations to make sure everything is even on both sides. If you want me to help you answer the questions comment back
Answer: electrons
Explanation: Electrons have a charge of -1 each. If two left, the remaining atom would have a positive +2 change.
Answer:There is colder and drier air coming
Explanation:
Answer : The concentration of
and
are
and
respectively.
Solution : Given,
pH = 4.10
pH : pH is defined as the negative logarithm of hydronium ion concentration.
Formula used : ![pH=-log[H_3O^+]](https://tex.z-dn.net/?f=pH%3D-log%5BH_3O%5E%2B%5D)
First we have to calculate the hydronium ion concentration by using pH formula.
![4.10=-log[H_3O^+]](https://tex.z-dn.net/?f=4.10%3D-log%5BH_3O%5E%2B%5D)
![[H_3O^+]=antilog(-4.10)](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%3Dantilog%28-4.10%29)
![[H_3O^+]=7.94\times 10^{-5}](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%3D7.94%5Ctimes%2010%5E%7B-5%7D)
Now we have to calculate the pOH.
As we know, 


Now we have to calculate the hydroxide ion concentration.
![pOH=-log[OH^-]](https://tex.z-dn.net/?f=pOH%3D-log%5BOH%5E-%5D)
![9.9=-log[OH^-]](https://tex.z-dn.net/?f=9.9%3D-log%5BOH%5E-%5D)
![[OH^-]=antilog(-9.9)](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3Dantilog%28-9.9%29)
![[OH^-]=1.258\times 10^{-10}](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D1.258%5Ctimes%2010%5E%7B-10%7D)
Therefore, the concentration of
and
are
and
respectively.