The number of protons is the atomic number
<h3>
Answer:</h3>
Single displacement reaction
<h3>
Explanation:</h3>
- Single replacement reaction is a type of reaction in which a reactive element displaces a less reactive element from its compound.
- The reaction given above; Al + H₂SO₄ → Al₂(SO₄)₃ + H₂ is a single replacement reaction.
- This is because Aluminium takes the place of hydrogen atoms in sulfuric acid to form aluminium sulfate and hydrogen gas.
- Double replacement reaction is where cations or anions are exchanged between two compounds to form new compounds.
- For example the reaction; NaCl(aq) + AgNO₃(aq) → NaNO₃(aq) + AgCl(aq) is a double displacement reaction.
Answer:
(3) NaNO₃
Step-by-step explanation:
Sodium nitrate has ionic bonds, because it consists of Na⁺ and NO₃⁻ ions.
However, the nitrate ions have <em>covalent bonds</em> between the O atoms and the central N atoms.
(1) and (2) are <em>wrong</em>. Both N₂O₅ and HCl consist of nonmetals, so they are <em>covalent</em> compounds.
(4) is <em>wrong</em>. NaCl has <em>only ionic bonds</em> between the Na⁺ and Cl⁻ ions
Answer:
3.64g
Explanation:
Given parameters:
Mass of NH₃ = 18.1g
Mass of Cu₂O = 90.4g
Unknown:
Limiting reactant = ?
Mass of N₂ formed = ?
Solution:
The reaction equation is given as:
Cu₂O + 2NH₃ → 6Cu + N₂ + 3H₂O
The limiting reactant is the one in short supply in the reaction. Let us find the number of moles of the given species;
Number of moles =
Molar mass of Cu₂O = 2(63.6) + 16 = 143.2g/mol
Molar mass of NH₃ = 14 + 3(1) = 17g/mol
Number of moles of Cu₂O =
= 0.13moles
Number of moles of NH₃ =
= 5.32moles
From this reaction;
1 mole of Cu₂O combines with 2 mole of NH₃
So 0.13moles of Cu₂O will combine with 0.13 x 2 mole of NH₃
= 0.26moles of NH₃
Therefore, Cu₂O is the limiting reactant. Ammonia is in excess;
Mass of N₂;
Mass = number of moles x molar mass
1 mole of Cu₂O will produce 1 mole of N₂
0.13 mole of Cu₂O will produce 0.13 mole of N₂
Mass = 0.13 x (2 x 14) = 3.64g
Answer:
648.5 mL
Explanation:
Here we will assume that the pressure of the gas is constant, since it is not given or specified.
Therefore, we can use Charle's law, which states that:
"For an ideal gas kept at constant pressure, the volume of the gas is proportional to its absolute temperature"
Mathematically:

where
V is the volume of the gas
T is its absolute temperature
The equation can be rewritten as

where in this problem we have:
is the initial volume of the gas
is the initial temperature
is the final temperature
Solving for V2, we find the final volume of the gas:
