Answer:
(a) See below
(b) 103.935 °F; 102.235 °F
Explanation:
The equation relating the temperature to time is

1. Calculate the thermometer readings after 0.5 min and 1 min
(a) After 0.5 min

(b) After 1 min

2. Calculate the thermometer reading after 2.0 min
T₀ =106.321 °F
ΔT = 100 - 106.321 °F = -6.321 °F
t = t - 1, because the cooling starts 1 min late

3. Plot the temperature readings as a function of time.
The graphs are shown below.
Answer:
Explanation:
All three lighter boron trihalides, BX3 (X = F, Cl, Br), form stable adducts with common Lewis bases. Their relative Lewis acidities can be evaluated in terms of the relative exothermicities of the adduct-forming reaction. Such measurements have revealed the following sequence for the Lewis acidity: BF3 < BCl3 < BBr3 (in other words, BBr3 is the strongest Lewis acid).
This trend is commonly attributed to the degree of π-bonding in the planar boron trihalide that would be lost upon pyramidalization (the conversion of the trigonal planar geometry to a tetrahedral one) of the BX3 molecule, which follows this trend: BF3 > BCl3 > BBr3 (that is, BBr3 is the most easily pyramidalized). The criteria for evaluating the relative strength of π-bonding are not clear, however. One suggestion is that the F atom is small compared to the larger Cl and Br atoms, and the lone pair electron in the 2pzorbital of F is readily and easily donated, and overlaps with the empty 2pz orbital of boron. As a result, the [latex]\pi[/latex] donation of F is greater than that of Cl or Br. In an alternative explanation, the low Lewis acidity for BF3 is attributed to the relative weakness of the bond in the adducts F3B-L.
A is the answer! I’m pretty sure hopefully i helped!!
Its <span>234or238 hope dis helped</span>
Answer:
C. NaOH acts as a reactant in the reaction
Explanation:
Because during the saponification process, Na+ replaces the H+ in the fatty acid been used for the saponification process