Answer:

Explanation:
Hello there!
In this case, sine the solution of this problem require the application of the Raoult's law, assuming heptane is a nonvolatile solute, so we can write:

Thus, we first calculate the mole fraction of chloroform, by using the given masses and molar masses as shown below:

Therefore, the partial pressure of chloroform turns out to be:

Regards!
Photosynthesis is the process where plants create energy. It requires water, carbon dioxide and sunlight. The end result is glucose, which the plants consume, and oxygen. Cellular respiration requires oxygen and glucose. The end result is carbon dioxide, ATP, and water.
Answer:
10 L of CO₂.
Explanation:
The balanced equation for the reaction is given below:
2CO + O₂ —> 2CO₂
From the balanced equation above,
2 L of CO reacted to produce 2 L of CO₂.
Finally, we shall determine the volume of CO₂ produced by the reaction of 10 L CO. This can be obtained as follow:
From the balanced equation above,
2 L of CO reacted to produce 2 L of CO₂.
Therefore, 10 L of CO will also react to produce 10 L of CO₂.
Thus, 10 L of CO₂ were obtained from the reaction.
5.6L of O2 means we have 0.25 moles of O2.
As, 1 mole has 6.023*10^23 molecules,
0.25 moles of O2 will have 0.25*6.023*10^23 molecules=1.50575*10^23 molecules
and as 1 molecule of O2 has 2 atoms, so, 1.50575*10^23 molecules will have 2*1.50575*10^23 atoms=3.0115*10^23 atoms of O.
Answer :
According to the law of conservation of mass, the mass of reactants must be equal to the mass of products.
The balanced chemical reaction is,

As we know that the molar mass of magnesium is 24 g/mole, the molar mass of
is 32 g/mole and the molar mass of magnesium oxide is 40 g/mole.
From the given balanced reaction, we conclude that
As, 1 mole of magnesium react
mole of oxygen to give 1 mole of magnesium oxide.
So, the mass of Mg is 24 g, the mass of
and the mass of MgO is 40 g.
That means 24 g of Mg react with 16 g
to give 40 g of MgO.