Answer: Mg is the excess reactant for the forward reaction.
Explanation: It is a stoichiometry problem and solved with the help of given grams and using balanced equation. Grams of both the reactants are converted to moles and divided by their coefficients. The excess reactant is the one for which we get the highest number on doing above steps.
The balanced equation is:

Molar mass of silicon tetra chloride is 169.9 gram per mol and the molar mass of Mg is 24.3 gram per mol.

= 

= 2.67 mol Mg
From balanced equation, the coefficient of silicon tetra chloride is 1 and that of Mg is 2. So, we will divide the moles of silicon tetra chloride by 1 and that of Mg by 2 and see which one gives highest number.
For silicon tetra chloride,
= 0.317
and for Mg,
= 1.34
The highest number is for Mg and so the excess reactant for the forward reaction is Mg.
Because H2O molecules make Hydrogen bounding and that's the first and strongest bound between molecules of a structure... So they stick together and don't let each other get evaporated...
U need lotsa energy to turn them into Gas shape
The correct is D.
Water is a polar molecule and it has polar bonds, which carry partially positive and partially negative charges. This polar bond increases the attraction between molecules of water and thus it requires a greater energy to break the bond between the molecules of water compare to carbon dioxide, which is a non polar molecule. Thus, water has a higher boiling point than carbon dioxide.
Answer: both compounds have ionic bond between metal and non-metal
Explanation: both Sr and Mg are earth alkaline metals and form ions Mg^2+
And Sr^2+. Br forms ion Br^- and S ion is S^2+.