Answer:
.................... protons :)
Clarify what you mean by ratios?
Answer:
current forms when electromagnetic waves strike a semiconductor, removing some of its electrons.
Explanation:
Answer:
3.33 N
Explanation:
First, find the acceleration.
Given:
Δx = 3 m
v₀ = 0 m/s
t = 3 s
Find: a
Δx = v₀ t + ½ at²
3 m = (0 m/s) (3 s) + ½ a (3 s)²
a = ⅔ m/s²
Use Newton's second law to find the force.
F = ma
F = (5 kg) (⅔ m/s²)
F ≈ 3.33 N
<h2>Answer: 10.52m</h2><h2 />
First, we have to establish the <u>reference system</u>. Let's assume that the building is on the negative y-axis and that the brick was thrown at the origin (see figure attached).
According to this, the initial velocity
has two components, because the brick was thrown at an angle
:
(1)
(2)
(3)
(4)
As this is a projectile motion, we have two principal equations related:
<h2>
In the x-axis:
</h2>
(5)
Where:
is the distance where the brick landed
is the time in seconds
If we already know
and
, we have to find the time (we will need it for the following equation):
(6)
(7)
<h2>
In the y-axis:
</h2>
(8)
Where:
is the height of the building (<u>in this case it has a negative sign because of the reference system we chose)</u>
is the acceleration due gravity
Substituting the known values, including the time we found on equation (7) in equation (8), we will find the height of the building:
(9)
(10)
Multiplying by -1 each side of the equation:
>>>>This is the height of the building