Answer:
n = 5 approx
Explanation:
If v be the velocity before the contact with the ground and v₁ be the velocity of bouncing back
= e ( coefficient of restitution ) = 
and

h₁ is height up-to which the ball bounces back after first bounce.
From the two equations we can write that


So on

= .00396
Taking log on both sides
- n / 2 = log .00396
n / 2 = 2.4
n = 5 approx
The kinetic energy is the same as the potential energy of raising it 40cm (0.4m). That's mgh where m is mass of ball. Its then 3.924*m, whatever m is equal to in kg.
T<span>he equation to be used here to determine the distance between two equipotential points is:
V = k * Q / r
where v is the voltage of the point, k is a constant, Q is charge of the point measured in coloumbs and r is the distance.
In this case, we can use ratio of proportions to determine the distance between the two points. in this respect,
Point 1:
V = k * Q / r = 290
r = k*Q/290 ; kQ = 290r
Point 2:
V = k * Q / R = 41
R = k*Q/41
from equation 10 kQ = 290r
R = 290/(41)= 7.07 m
The distance between the two points then is equal to 7.07 m.
</span>
Answer:
T = 5.36 s
Explanation:
given,
depth of the mine shaft = 122.5 m
speed of the sound = 340 m/s
time taken = ?
time taken by the stone to reach at the bottom
using equation of motion

initial speed , u = 0 m/s


t = 5 s
time taken by the sound to travel
d =v x t


t = 0.36 s
total time taken for the sound to reach carol after dropping the stone
T = 5 + 0.36
T = 5.36 s
Hey there!
So we know that m*v=P.
And in this question m=30
v=5 m/s
P = 30*5 Kgm/s
P = 150 Kgm/s
So, your final answer is 150 Kg.m/s
Hope this helps! :)