Answer:
<h3>0.69</h3>
Explanation:
Using the Newtons law of motion;

Fm is the moving force = 400N
Ff is the frictional force = μR
μ is the coefficient of kinetic friction
R is the reaction = mg
m is the mass
a is the acceleration
The equation becomes;

Hence the coefficient of kinetic friction between the box and floor is 0.69
Answer:
A. Z = 185.87Ω
B. I = 0.16A
C. V = 1mV
D. VL = 68.8V
E. Ф = 30.59°
Explanation:
A. The impedance of a RL circuit is given by the following formula:
(1)
R: resistance of the circuit = 160-Ω
w: angular frequency = 220 rad/s
L: inductance of the circuit = 0.430H
You replace in the equation (1):

The impedance of the circuit is 185.87Ω
B. The current amplitude is:
(2)
V: voltage amplitude = 30.0V

The current amplitude is 0.16A
C. The current I is the same for each component of the circuit. Then, the voltage in the resistor is:
(3)
D. The voltage across the inductor is:

E. The phase difference is given by:

Answer:
An electric fan is considered to be a mixture of several simple machines. It includes the Wheel and Axle type, wedges, and the Inclined plane types. The blades of an electric fan are the inclined planes and the wedges.
The length to which the pendulum will be adjusted to keep perfect time is 29.59 inches. See the explanation below.
<h3>What is the justification for the above answer?</h3>
T1 = 2πR√(L1/GM)
and
T2 = 2πR√(L1/GM)
T1/T2 = √(L1/L2).
If the pendulum has an efficient period, that means it executes with perfect frequency.
Thus,
T2 = (24 * 60)/x
= 1440/x
This means that in one day, there are perfect cycles of represented by "x". Note that there are 1440 minutes in one day.
If the other Pendulum is slower by 10 minutes, that means
T1 = 1450/x
Hence
(1450/x)/(1440/x) = √(L1/L2).
⇒ 1450/1440 = √(L1/L2).
Thus,
(1450/1440)² = 30/L
L = 30/(1450/1440)²
L = 30/(1.00694444444)²
L = 30/1.01393711419
L = 29.5876337695
L
29.59 inches.
Hence, the pendulum will need to be adjusted by 29.59 inches to ensure that the clock keeps perfect time.
Learn more about pendulum problems:
brainly.com/question/16617199
#SPJ4
Answer:
C)The side that the charge is on, the top.
Explanation:
As we know that
1)More flux is possible, when the field is perpendicular to the cross sectional area.
2)Electrical field lines are more power full in this side because the charge is near to the top side.
3)Those sides are electric field parallel to area that sides have minimum flux.
So
The side that the charge is on, the top ,have least flux traverse.
Option C is correct.