A must be at least 4 full paragraphs probably will need more
Answer:
<h2>1139.5 J</h2>
Explanation:
The work done by an object can be found by using the formula
workdone = force × distance
From the question we have
work done = 265 × 4.3 = 1139.5
We have the final answer as
<h3>1139.5 J</h3>
Hope this helps you
The mechanical energy isn't conserved. Some energy is lost to friction.
Option A.
<h3><u>Explanation:</u></h3>
The mechanical energy is defined as the energy of a body which it achieves by virtue of its position and velocity. The mechanical energy are of two types - potential energy and kinetic energy. The potential energy is the energy of the body which it achieves by means of its relative position and is directly proportional to the height of the body from its relative plane. Whereas the kinetic energy of the body is achieved by virtue of its velocity and is directly proportional to the square of velocity of the body.
As the mountaineer is skiing down the slope of a mountain, the potential energy of the person is gradually changing into his kinetic energy. Had it been in an ideal situation, the potential energy lost would have been just equal to the kinetic energy gained by the person. But there's friction which opposes the speed of the body and reduces the velocity. Thus the kinetic energy will be lost to some extent and the energy won't be conserved.
Answer:
electrons exist in specified energy levels
Explanation:
In its gold-foil scattering with alpha particles, Rutherford proved that the plum-pudding model of the atom theorised by Thomson was wrong.
From his experiment, Rutherford inferred that the atom actually consists of a very small nucleus, where all the positive charge is concentrated, and the rest of the atom is basically empty, with the electrons (negatively charged) orbiting around the nucleus at very large distance.
However, Rutherford did not specify anything about the orbits of the electrons. Later, Bohr predicted that the electrons actually orbit the nucleus in specific orbits, each orbit corresponding to a specific energy level. Bohr's model found confirmation in the observation of the emission spectrum lines: when an electron in one of the higher energy level jumps down into an orbit with lower energy, the atom emits a photon which has an energy exactly equal to the difference in energy between the two orbits (and this energy of the photon corresponds to a precise wavelength).
Answer:
K.Eₓ = 4 K.E
K.Eₓ = 9 K.E
Explanation:
Th formula for the kinetic energy of a body is given as follows:
---------------equation (1)
where,
K.E = Kinetic Energy of Automobile
m = mass of automobile
v = speed of automobile
For twice speed:
vₓ = 2v
then,

using equation (1):
<u>K.Eₓ = 4 K.E</u>
For thrice speed:
vₓ = 3v
then,

using equation (1):
<u>K.Eₓ = 9 K.E</u>