If you follow the octet rule, you know that an element must have 8 outside (or valence) electrons to be energetically favorable.
In CCl4, the carbon molecule forms four bonds; one for each chlorine atom. Each bond contains 2 electrons, so it is satisfied.
In PCl3, Phosphorous forms only 3 bonds with chlorine, which means in order to have 8 valence electrons, it also has a lone pair of electrons, not bonded with chlorine.
Now, in CCl4, picture the shape of the molecule like a plus sign, with the carbon in the middle and the chlorine at the four ends. It is symmetrical, and therefore is nonpolar.
In PCl3, the lone pair electrons <em>push</em>, so to speak, the 3 chlorine atoms away, making a T-shaped molecule. Since the chlorine is more electronegative than carbon, the molecule is unbalenced, making it polar.
Answer:
The highest energy level number (1 through 7) for the electrons in an atom corresponds to the period (or row) in the periodic table to which that atom belongs. Because there are 7 periods in the table, there are 7 energy levels. For example, hydrogen (H) is in the first period, so it has only one energy level.
Answer:
See figure 1
Explanation:
For this question, we have to remember that in the lewis structures all atoms must have<u> 8 electrons</u>. And each atom would have a different value of <u>valence electrons</u>:
Carbon => 4
Oxygen=> 6
Hydrogen=> 1
Additionally, for the <u>hybridizations</u> we have to remember that:
=> 4 single bonds
=> 1 double bond
=> 1 double bond
With this in mind, the formaldehyde and formic acid would have
carbons and the ethanol an
carbon.
Finally, for the oxidation state. We have to remember that <u>if we have more bonds with oxygen, we will have more oxidation</u>. Therefore, the carbon that has more oxidation is the one in the formic acid (we have several bonds with oxygen).
See figure 1
I hope it helps!
The answer is b, corporation