3.
a)
r = distance of each mass in each hand from center = 0.6 m
m = mass of each mass in each hand = 2 kg
v = linear speed = 1.1 m/s
L = combined angular momentum of the masses = ?
Combined angular momentum of the masses is given as
L = 2 m v r
L = 2 (2) (1.1) (0.6)
L = 2.64 kg m²/s
b)
v' = linear speed when she pulls her arms = ?
r' = distance of each mass from center after she pulls her arms = 0.15 m
Using conservation of momentum , angular momentum remains same, hence
L = 2 m v' r'
2.64 = 2 (2) (0.15) v'
v' = 4.4 m/s
Answer:
a) The distance of the object from the center of the Earth is 8.92x10⁶ m.
b) The initial acceleration of the object is 5 m/s².
Explanation:
a) The distance can be found using the equation of gravitational force:

Where:
G: is the gravitational constant = 6.67x10⁻¹¹ Nm²/kg²
M: is the Earth's mass = 5.97x10²⁴ kg
m: is the object's mass = 0.4 kg
F: is the force or the weight = 2.0 N
r: is the distance =?
The distance is:
Hence, the distance of the object from the center of the Earth is 8.92x10⁶ m.
b) The initial acceleration of the object can be calculated knowing the weight:
Where:
W: is the weight = 2 N
a: is the initial acceleration =?

Therefore, the initial acceleration of the object is 5 m/s².
I hope it helps you!
Answer:
276.62 m/s
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.81 m/s² (positive downward and negative upward)
Equation of motion

<u>Neglecting air drag</u> the velocity of the spherical drop would be 276.62 m/s
Answer:
1.0 x 10-14.
Explanation:
We then replace the term on the right side of this equation with a constant known as the water dissociation equilibrium constant, Kw. In pure water, at 25C, the [H3O+] and [OH-] ion concentrations are 1.0 x 10-7 M. The value of Kw at 25C is therefore
Because when your running any experiment there will always be an experimental error so always be ready for it so that you can correct that error in your experiment