Answer:
(FeSCN⁺²) = 0.11 mM
Explanation:
Fe ( NO3)3 (aq) [0.200M] + KSCN (aq) [ 0.002M] ⇒ FeSCN+2
M (Fe(NO₃)₃ = 0.200 M
V (Fe(NO₃)₃ = 10.63 mL
n (Fe(NO₃)₃ = 0.200*10.63 = 2.126 mmol
M (KSCN) = 0.00200 M
V (KSCN) = 1.42 mL
n (KSCN) = 0.00200 * 1.42 = 0.00284 mmol
Total volume = V (Fe(NO₃)₃ + V (KSCN)
= 10.63 + 1.42
= 12.05 mL
Limiting reactant = KSCN
So,
FeSCN⁺² = 0.00284 mmol
M (FeSCN⁺²) = 0.00284/12.05
= 0.000236 M
Excess reactant = (Fe(NO₃)₃
n(Fe(NO₃)₃ = 2.126 mmol - 0.00284 mmol
=2.123 mmol
For standard 2:
n (FeSCN⁺²) = 0.000236 * 4.63
=0.00109
V(standard 2) = 4.63 + 5.17
= 9.8 mL
M (FeSCN⁺²) = 0.00109/9.8
= 0.000111 M = 0.11 mM
Therefore, (FeSCN⁺²) = 0.11 mM
Answer:
the advantages of modern periodic tables are given below and explained.
- position of hydrogen:since hydrogen has the least atomic number i.e 1 ,it is kept in group 1 of modern periodic table, but still controversial due to its. dual characteristics since it shows the characteristics of borh group 1 and group 17.
- position of isotopes :isotopes are element having the same atomic number but different atomic weight . Without any doubt all isotopes of one element and kept in one place.
- position of lanthanide and acnitinides: element of Lanthanides series and element of Actinides series are kept below the main block of the periodic table as they have different properties from other elements.
- correction of periodic law: some elements do not obey mendeleev periodic law , but when they are arranged according to atomic number they obey the modern periodic law.
- position of alkali metals and coinage metals : in modern periodic table , alkali metal are kept in group IA and coinage metals are in group.
hope this helped you☺️
any confusion then comment it and let me know.
actually as I say these points say that the modern periodic table is better than mendeleev periodic table so, don't get confused.
Answer:
I dont undarsatnd 2gebwhsanKM<dwkdwndwkjdwnfwkjdnfkwnfwkf
Explanation:
wnkf mnf wnmd
To determine the shapes of molecules, we must become acquainted with the Lewis electron dot structure. Although the Lewis theory does not determine the shapes of molecules, it is the first step in predicting shapes of molecules. The Lewis structure helps us identify the bond pairs and the lone pairs.
Please mark BRAINLIEST.
A new material is formed in <span>result of a chemical change. Typically, the chemical changes always make the new material.</span><span />