By looking at how wiggily the bar is lol
The actual question should be did the sound waves escape room?
Yes they can escape the room
- Sound always needs a medium to travel through
- If you close the room form all where that even air can't go outside you will be able to hear no sound coming from room .
The time when the particle is at rest is at 1.63 s or 3.36 s.
The velocity is positive at when the time of motion is at
.
The total distance traveled in the first 10 seconds is 847 m.
<h3>When is a particle at rest?</h3>
- A particle is at rest when the initial velocity of the particle is zero.
The time when the particle is at rest is calculated as follows;
s(t) = 2t³ - 15t² + 33t + 17

The velocity is positive at when the time of motion is as follows;
.
The total distance traveled in the first 10 seconds is calculated as follows;

Learn more about motion of particles here: brainly.com/question/11066673
Explanation:
12) q = mCΔT
125,600 J = (500 g) (4.184 J/g/K) (T − 22°C)
T = 82.0°C
13) Solving for ΔT:
ΔT = q / (mC)
a) ΔT = 1 kJ / (0.4 kg × 0.45 kJ/kg/K) = 5.56°C
b) ΔT = 2 kJ / (0.4 kg × 0.45 kJ/kg/K) = 11.1°C
c) ΔT = 2 kJ / (0.8 kg × 0.45 kJ/kg/K) = 5.56°C
d) ΔT = 1 kJ / (0.4 kg × 0.90 kJ/kg/K) = 2.78°C
e) ΔT = 2 kJ / (0.4 kg × 0.90 kJ/kg/K) = 5.56°C
f) ΔT = 2 kJ / (0.8 kg × 0.90 kJ/kg/K) = 2.78°C
14) q = mCΔT
q = (2000 mL × 1 g/mL) (4.184 J/g/K) (80°C − 20°C)
q = 502,000 J
20) q = mCΔT
q = (2000 g) (4.184 J/g/K) (100°C − 15°C) + (400 g) (0.9 J/g/K) (100°C − 15°C)
q = 742,000 J
24) q = mCΔT
q = (0.10 g) (0.14 J/g/K) (8.5°C − 15°C)
q = -0.091 J
Answer:

at t = 0.001 we have

at t = 0.01

at t = infinity

Explanation:
As we know that they are in series so the voltage across all three will be sum of all individual voltages
so it is given as

now we will have

now we have

So we will have

at t = 0 we have
q = 0

also we know that
at t = 0 i = 0




so we have

at t = 0.001 we have

at t = 0.01

at t = infinity
