Answer:
a) the inductance of the coil is 6 mH
b) the emf generated in the coil is 18 mV
Explanation:
Given the data in the question;
N = 570 turns
diameter of tube d = 8.10 cm = 0.081 m
length of the wire-wrapped portion l = 35.0 cm = 0.35 m
a) the inductance of the coil (in mH)
inductance of solenoid
L = N²μA / l
A = πd²/4
so
L = N²μ(πd²/4) / l
L = N²μ(πd²) / 4l
we know that μ = 4π × 10⁻⁷ TmA⁻¹
we substitute
L = [(570)² × 4π × 10⁻⁷× ( π × (0.081)² )] / 4(0.35)
L = 0.00841549 / 1.4
L = 6 × 10⁻³ H
L = 6 × 10⁻³ × 1000 mH
L = 6 mH
Therefore, the inductance of the coil is 6 mH
b)
Emf ( ∈ ) = L di/dt
given that; di/dt = 3.00 A/sec
{∴ di = 3 - 0 = 3 and dt = 1 sec}
Emf ( ∈ ) = L di/dt
we substitute
⇒ 6 × 10⁻³ ( 3/1 )
= 18 × 10⁻³ V
= 18 × 10⁻³ × 1000
= 18 mV
Therefore, the emf generated in the coil is 18 mV
Answer:
touching
Explanation:
The backrest of the seat should be tilted back ever so slightly, and when turning the steering wheel your shoulders should remain in contact with the seat – rather than hunched forward.
Answer:
baking soda and vinegar dish soap
Explanation:
it will create a bubbles and let it sit for 3 hours and it will go away
Answer:
The resistance is 24.9 Ω
Explanation:
The resistivity is equal to:

The area is:
A = 60 * 60 = 3600 um² = 0.36x10⁻⁴cm²

If NA is greater, then, the term 1/NA can be neglected, thus the equation:

Where
V = 0.44 V
E = 11.68*8.85x10¹⁴ f/cm


The length is:
L = 10 - 0.335 = 9.665 um
The resistance is:
