Answer:
![1.0 * 10^{-10} = 0.0000000001](https://tex.z-dn.net/?f=1.0%20%2A%2010%5E%7B-10%7D%20%3D%200.0000000001)
Explanation:
Given
![1.0 * 10^{-10}](https://tex.z-dn.net/?f=1.0%20%2A%2010%5E%7B-10%7D)
Required
Convert to standard form
![1.0 * 10^{-10}](https://tex.z-dn.net/?f=1.0%20%2A%2010%5E%7B-10%7D)
From laws of indices
![a^{-x} = \frac{1}{a^x}](https://tex.z-dn.net/?f=a%5E%7B-x%7D%20%3D%20%5Cfrac%7B1%7D%7Ba%5Ex%7D)
So,
is equivalent to
![1.0 * 10^{-10} = 1.0 * \frac{1}{10^{10}}](https://tex.z-dn.net/?f=1.0%20%2A%2010%5E%7B-10%7D%20%3D%201.0%20%2A%20%5Cfrac%7B1%7D%7B10%5E%7B10%7D%7D)
![1.0 * 10^{-10} = 1.0 * \frac{1}{10}* \frac{1}{10}* \frac{1}{10}* \frac{1}{10}* \frac{1}{10}* \frac{1}{10}* \frac{1}{10}* \frac{1}{10}* \frac{1}{10}* \frac{1}{10}](https://tex.z-dn.net/?f=1.0%20%2A%2010%5E%7B-10%7D%20%3D%201.0%20%2A%20%5Cfrac%7B1%7D%7B10%7D%2A%20%5Cfrac%7B1%7D%7B10%7D%2A%20%5Cfrac%7B1%7D%7B10%7D%2A%20%5Cfrac%7B1%7D%7B10%7D%2A%20%5Cfrac%7B1%7D%7B10%7D%2A%20%5Cfrac%7B1%7D%7B10%7D%2A%20%5Cfrac%7B1%7D%7B10%7D%2A%20%5Cfrac%7B1%7D%7B10%7D%2A%20%5Cfrac%7B1%7D%7B10%7D%2A%20%5Cfrac%7B1%7D%7B10%7D)
![1.0 * 10^{-10} = 1.0 * \frac{1}{10000000000}](https://tex.z-dn.net/?f=1.0%20%2A%2010%5E%7B-10%7D%20%3D%201.0%20%2A%20%5Cfrac%7B1%7D%7B10000000000%7D)
![1.0 * 10^{-10} = 1.0 * 0.0000000001](https://tex.z-dn.net/?f=1.0%20%2A%2010%5E%7B-10%7D%20%3D%201.0%20%2A%200.0000000001)
![1.0 * 10^{-10} = 0.0000000001](https://tex.z-dn.net/?f=1.0%20%2A%2010%5E%7B-10%7D%20%3D%200.0000000001)
Hence, the standard form of
is ![0.0000000001](https://tex.z-dn.net/?f=0.0000000001)
Why 1+12+ Y3 < 1100
Says the state of university Need to purchase 1100 computers in total, we have the following answer on the way top
Answer:
your answer is correct
Explanation:
You have the correct mapping from inputs to outputs. The only thing your teacher may disagree with is the ordering of your inputs. They might be written more conventionally as ...
A B Y
0 0 1
0 1 0
1 0 0
1 1 1
That is, your teacher may be looking for the pattern 1001 in the last column without paying attention to what you have written in column B.
Answer:
What is one of the “don’ts” in drawing dimension lines? they should never be labeled they should never be stacked they should never cross each other they should never have only one measurement value