Engineering, maths and computer courses and more depending on your deficiencies
Answer: a) Fd = 3.24 N/m
b) Q = 520 w/m
Explanation: please find the attached files for the solution
Answer:
Explanation:
As a security professional, I will respond positively to the OSHA requirements overlap. OSHA guidelines are meant to provide general guidance to all members of various entities throughout the country, while local or state codes also ensure compliance with laws unique to their areas, taking into account workplace safety and security.
OSHA accepts the security codes of the state building To the degree that such codes comply with OSHA regulations, such as BOCA. All the codes and regulations for local, state-owned construction, electrical and life protection are under the same umbrella. Generally, all security protocols and specifications are in accordance with OSHA guidelines. Nonetheless, certain points will overlap, while localized codes will also be addressed to a particular community or state that may
Answer:
See below
Explanation:
<u>Check One-Sample T-Interval Conditions</u>
Random Sample? √
Sample Size ≥30? √
Independent? √
Population Standard Deviation Unknown? √
<u>One-Sample T-Interval Information</u>
- Formula -->

- Sample Mean -->

- Critical Value -->
(given
degrees of freedom at a 95% confidence level) - Sample Size -->

- Sample Standard Deviation -->

<u>Problem 1</u>
The critical t-value, as mentioned previously, would be
, making the 95% confidence interval equal to 
This interval suggests that we are 95% confident that the true mean levels of lead in soil are between 381.5819 and 398.9181 parts per million (ppm), which satisfies the EPA's regulated maximum of 400 ppm.
Answer:
Force per unit plate area is 0.1344 
Solution:
As per the question:
The spacing between each wall and the plate, d = 10 mm = 0.01 m
Absolute viscosity of the liquid, 
Speed, v = 35 mm/s = 0.035 m/s
Now,
Suppose the drag force that exist between each wall and plate is F and F' respectively:
Net Drag Force = F' + F''

where
= shear stress
A = Cross - sectional Area
Therefore,
Net Drag Force, F = 

Also
F = 
where
= dynamic coefficient of viscosity
Pressure, P = 
Therefore,

