Answer:
332.918g O2
Explanation:
I'm having some issues with the work however, your final answer should be 332.918g O2
Hope this helped!
Answer:
The mole is important because it allows chemist to work with a subatomic world with macro world units and amount. Atoms molecules and formula units are very small and very difficult to work with usually. However the mole allows a chemist to work with amount large enough to use.
Answer:

Explanation:
Given that:

From equation (3) , multiplying (-1) with equation (3) and interchanging reactant with the product side; we have:

Multiplying (2) with equation (4) ; we have:

From equation (1) ; multiplying (-1) with equation (1); we have:

From equation (2); multiplying (3) with equation (2); we have:

Now; Adding up equation (5), (6) & (7) ; we get:



<u> </u>

<u> </u>
<u />
(According to Hess Law)


Explanation:
You may not realise it, but you come across aldehydes and ketones many times a day. Take cakes and biscuits, for example. Their golden, caramelised crust is formed thanks to the Mailliard reaction. This is a process that occurs at temperatures above 140° C, when sugars with the carbonyl group in foods react with nucleophilic amino acids to create new and complex flavours and aromas.
Another example is formaldehyde. Correctly known as methanal, it is the most common aldehyde in industry. It has multiple uses, such as in tanning and embalming, or as a fungicide. However, we can also react it with different molecules to make a variety of more useful compounds. These include polymers, adhesives and precursors to explosives. But how do aldehydes and ketones react, and why?You should remember from Aldehydes and Ketones that they both contain the carbonyl functional group , . This is a carbon atom joined to an oxygen atom by a double bond. Let's take a closer look at it.
If we compare the electronegativities of carbon and oxygen, we can see that oxygen is a lot more electronegative than carbon.
Answer:
There was 450.068g of water in the pot.
Explanation:
Latent heat of vaporisation = 2260 kJ/kg = 2260 J/g = L
Specific Heat of Steam = 2.010 kJ/kg C = 2.010 J/g = s
Let m = x g be the weight of water in the pot.
Energy required to vaporise water = mL = 2260x
Energy required to raise the temperature of water from 100 C to 135 C = msΔT = 70.35x
Total energy required = 

Hence, there was 450.068g of water in the pot.