Answer:
The maximum amount of solute that dissolves in a given amount of solvent and forms a stable solution is called the solubility of the solute
Explanation:
The maximum amount of solute that could be dissolved in a given amount of solvent is the solubility of the solute. It is the saturated solution's concentration from where a saturated solution can be defined as the one which already contains the maximum quantity of dissolved solute at a specified temperature, while an unsaturated solution is one with a capacity to dissolve more solutes
Answer:
e
Explanation:
<em>Provided the reaction that leads to the formation of the products can proceed in both forward and backward directions, the correct answer would be yes because the reaction will proceed backward until equilibrium is reached.</em>
<u>For a reaction that can proceed both forward and backward, the addition of a catalyst increases the rate of reaction in both directions based on the fact that a catalyst cannot alter the equilibrium of a reaction. </u>
Hence, if an enzyme is added to the product of a reaction that has the potential to proceed in both forward and reverse reactions, a substrate would be expected to form because the reaction will proceed backward until an equilibrium is reached.
The correct option is e.
Their boiling points tend to increase with chain length.<span>
</span>
Molar mass (CaCl2) = 40.1 +2*35.5 = 111.1 g/mol
Molar mass (AlCl3) = 27.0 +3*35.5= 133.5 g/ mol
3CaCl2+Al2O3 -------->3CaO +2AlCl3
mole from reaction 3 mol 2 mol
mass from reaction 3mol* 111.1g/mol 2 mol*133.5g/mol
333.3 g 267.0 g
mass from problem 45.7 g x g
Proportion:
333.3 g CaCl2 ------- 267.0 g AlCl3
45.7 g CaCl2 -------- x g AlCl3
x=45.7*267.0/333.3= 36.6 g AlCl3