Answer: remains constant.
Justification:
1) The phase changes are:
i) Boiling: pass from liquid to gas (absorbs heat energy)
ii) Condensation: pass from gas to liquid (release heat energy)
iii) Melting: pass from solid to liquid (absorb heat energy)
iv) Freezing: pass from liquid to solid (release heat energy)
v) Sublimation: pass from solid to gas (absorbs heat energy)
vii) Deposition: pass from gas to solid (release heat energy)
2) When a phase change occurs, whichever it is, the heat energy related with the process, either absortion or release, is used, to overcome the intermolecular forces (in the case of heat energy absortion) or to create stronger intermolecular forces (in the case of heat energy release).
Because of that, the heat energy exchange does not change the temperature of the substance.
Im honestly not really sure ..
i just need points
im sorry
Answer:
Butanoic acid present in solution
Explanation:
In this case, we have a buffer solution of butanoic acid and sodium butanoate. In other words a reaction like this:
HC₄H₇O₂ + H₂O <------> C₄H₇O₂⁻ + H₃O⁺ Ka = 1.5x10⁻⁵
The low value of Ka means that this is a weak acid. So, after this, the NaOH is added to the solution.
The NaOH is a really strong base, so we might expect that the pH of the solution increase drastically, however this do not occur.
The reason for this is because the first thing to happen in this reaction is an acid base reaction.
The NaOH react with the butanoic acid still present in solution, because is a weak acid, so in solution, this acid is not completely dissociated into it's respective ions. So the butanoic acid reacts with the NaOH and the products:
HC₄H₇O₂ + NaOH <------> Na⁺C₄H₇O₂⁻ + H₂O
So, because of this, the pH increase but not much.
One of the things you look at is how many electrons does the atom has in its outer shell or how many valance electrons the atom has? if the outer shell is full than atoms are more stable and will not usually bond with other atoms.<span>
</span>
<span>work = force x distances </span>
<span>A - moving 2 newton's up 0.6 meter = 1.2 joules
B - moving 4 newton's up 0.6 meter = 2.4 joules
C - moving 6 newton's up 0.3 meter = 1.8 joules
D - moving 9 newton's up 0.3 meter = 2.7 joules
The greatest amount of work is in example D.
</span>
<span>
D is your answer. </span>