This question involves the concepts of Wein's displacement law and characteristic wavelength.
The blackbody temperature will be "3.22 x 10⁵ k".
<h3>WEIN'S DISPLACEMENT LAW</h3>
According to Wein's displacement law,

where,
= characteristic wavelength = 9 μm = 9 x 10⁻⁹ m- T = temperature = ?
- c = Wein's displacment constant = 2.897 x 10⁻³ m.k
Therefore,

T = 3.22 x 10⁵ k
Learn more about characteristic wavelength here:
brainly.com/question/14650107
Answer:
When did humans learn that the Earth is not the center of the universe?
Answer
1
Follow
Request
More
Ad by Odoo
Odoo: The open-source CRM!
Keep track of leads and opportunities, personalize sales cycles, and control forecasts with Odoo CRM!
Learn More
4 Answers
Asked in 3 Spaces


Science - Next Generation
Alexander Somm
, Consultant, Investor Relations at Novelpharm AG (2015-present)
Answered Oct 16
What, it isn’t?!
Sorry, I had to.
As far as I have read and understood, the Sumerians and later the Babylonians both had astronomical calendars that already differentiated planets and stars. Earth was not the center to them, the Sun likely was. That was around 2,200 - 1,600 BC.
After that, Greek philosopher Aristarchus of Samos (310 - 230 BC) was the first (recorded) to have believed the solar system was organized around the Sun, rather than the Earth. His heliocentric model was unpopular during Aristarchus’ lifetime, although it would inspire astronomers centuries later, such as Copernicus and Galileo.
Now, there are numerous archeological findings (cave paintings) and studies, that all suggest an understanding of complex astronomy in prehistoric times dating back as far as 40,000 years. This also explains how early, prehistoric migrants may have navigated the seas.
Explanation:
hope it helps
have a good day
Answer:
The possible range of wavelengths in air produced by the instrument is 7.62 m and 0.914 m respectively.
Explanation:
Given that,
The notes produced by a tuba range in frequency from approximately 45 Hz to 375 Hz.
The speed of sound in air is 343 m/s.
To find,
The wavelength range for the corresponding frequency.
Solution,
The speed of sound is given by the following relation as :

Wavelength for f = 45 Hz is,


Wavelength for f = 375 Hz is,


So, the possible range of wavelengths in air produced by the instrument is 7.62 m and 0.914 m respectively.