The answer should be false. Elements contain only one atom.
The new volume when pressure increases to 2,030 kPa is 0.8L
BOYLE'S LAW:
The new volume of a gas can be calculated using Boyle's law equation:
P1V1 = P2V2
Where;
- P1 = initial pressure (kPa)
- P2 = final pressure (kPa)
- V1 = initial volume (L)
- V2 = final volume (L)
According to this question, a 4.0 L balloon has a pressure of 406 kPa. When the pressure increases to 2,030 kPa, the volume is calculated as:
406 × 4 = 2030 × V2
1624 = 2030V2
V2 = 1624 ÷ 2030
V2 = 0.8L
Therefore, the new volume when pressure increases to 2,030 kPa is 0.8L.
Learn more about Boyle's law calculations at: brainly.com/question/1437490?referrer=searchResults
Answer:
171.34 g/mol
Explanation:
Ba molar mass = 137.328 g/mol
O molar mass = 15.999 g/mol * 2 = 31.9980 g/mol
H molar mass = 1.008 g/mol * 2 = 2.0160 g/mol
137.328 + 31.9980 + 2.0160 = 171.3420 = 171.34 g/mol
Answer:
412.1kJ
Explanation:
For the reaction , from the question -
4Fe (s) + 3O₂ (g) → 2Fe₂O₃ (s)
Δ Hrxn = Δ H°f (products) - Δ H°f (reactants)
In case the compound is in its standard state , enthalphy of formation is zero
Hence ,
for the above reaction ,
ΔHrxn =( 2 * Δ H° (Fe₂O₃ )) - [ ( 4 *Δ H° Fe ) + (3 * Δ H° O₂ )]
The value for Δ H°(Fe₂O₃ ) = - 824.2kJ/mol
Δ H° Fe = 0
Δ H° O₂ = 0
Putting in the above equation ,
ΔH rxn = ( 2 * Δ H° (Fe₂O₃ )) - 0
ΔHrxn = 2× - 824.2 kJ / mol = - 1648.4 kJ/mol
- 1648.4 kJ/mol , this much heat is released by the buring of 4 mol of Fe.
Hence ,
for 1 mol of Fe ,
- 1648.4 kJ/mol / 4 = 412.1kJ