While the number nuclear protons as given is 34, and therefore we deal with the element selenium, there are 2 more electrons than protons, and therefore this species has an overall
2
−
charge.
We represent this selenide ion as
S
e
2
−
. Do I win 5 pounds?
Z= 34, therefore the atom is selenium
Answer:
Photosynthesis converts carbon dioxide and water into oxygen and glucose. Glucose is used as food by the plant and oxygen is a by-product. Cellular respiration converts oxygen and glucose into water and carbon dioxide. Water and carbon dioxide are by- products and ATP is energy that is transformed from the process.
They exist in the outer orbitals
Metallic bonding
The particles in a metal are held together by metallic bonds.
High melting and boiling points
Metallic bonds are strong and a lot of energy is needed to break them. This is why metals have high melting points and boiling points.
Conducting electricity
Metals contain electrons that are free to move in the metal structure, carrying charge from place to place and allowing metals to conduct electricity well.
Metallic bonding - Higher tier
Metallic bonding is the strong attraction between closely packed positive metal ions and a 'sea' of delocalised electrons.
Answer : The concentration of
and
are
and
respectively.
Solution : Given,
pH = 4.10
pH : pH is defined as the negative logarithm of hydronium ion concentration.
Formula used : ![pH=-log[H_3O^+]](https://tex.z-dn.net/?f=pH%3D-log%5BH_3O%5E%2B%5D)
First we have to calculate the hydronium ion concentration by using pH formula.
![4.10=-log[H_3O^+]](https://tex.z-dn.net/?f=4.10%3D-log%5BH_3O%5E%2B%5D)
![[H_3O^+]=antilog(-4.10)](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%3Dantilog%28-4.10%29)
![[H_3O^+]=7.94\times 10^{-5}](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%3D7.94%5Ctimes%2010%5E%7B-5%7D)
Now we have to calculate the pOH.
As we know, 


Now we have to calculate the hydroxide ion concentration.
![pOH=-log[OH^-]](https://tex.z-dn.net/?f=pOH%3D-log%5BOH%5E-%5D)
![9.9=-log[OH^-]](https://tex.z-dn.net/?f=9.9%3D-log%5BOH%5E-%5D)
![[OH^-]=antilog(-9.9)](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3Dantilog%28-9.9%29)
![[OH^-]=1.258\times 10^{-10}](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D1.258%5Ctimes%2010%5E%7B-10%7D)
Therefore, the concentration of
and
are
and
respectively.