Just add 273 to it. u'll get 288 kelvin =)
Answer:
0.886 J/g.°C
Explanation:
Step 1: Calculate the heat absorbed by the water
We will use the following expression
Q = c × m × ΔT
where,
- c: specific heat capacity
- ΔT: change in the temperature
Q(water) = c(water) × m(water) × ΔT(water)
Q(water) = 4.184 J/g.°C × 50.0 g × (34.4 °C - 25.36 °C) = 1.89 × 10³ J
According to the law of conservation of energy, the sum of the energy lost by the solid and the energy absorbed by the water is zero.
Q(water) + Q(solid) = 0
Q(solid) = -Q(water) = -1.89 × 10³ J
Step 2: Calculate the specific heat capacity of the solid
We will use the following expression.
Q(solid) = c(solid) × m(solid) × ΔT(solid)
c(solid) = Q(solid) / m(solid) × ΔT(solid)
c(solid) = (-1.89 × 10³ J) / 32.53 g × (34.4 °C - 100. °C) = 0.886 J/g.°C
Answer:
1) Increase
2) Decreases
3) increases
4) Increase
Explanation:
These questions can only be answered by considering the principle which states that, "When a constraint such as a change in concentration, pressure or volume is imposed on a reaction system in equilibrium. The system will readjust itself in order to annul the constraint."
Now, if more reactants are added, the equilibrium position will shift towards the right, If more products are added, the equilibrium position will shift to the left.
Similarly, the removal of H2S causes the O2 concentration to increase since the equilibrium position now shifts to the left.
Also, addition of O2 causes H2S to be removed as the equilibrium moves to the right.
Fluorine is an element with the highest electronegativity value.
Explanation:
Bella is right
Some genes act as instructions to make molecules called proteins. However, many genes do not code for proteins. In humans, genes vary in size from a few hundred DNA bases to more than 2 million bases.