Answer:
Some general principles are given below in the explanation segment.
Explanation:
Sewage treatment seems to be a method to extract pollutants from untreated sewage, consisting primarily of domestic sewage including some solid wastes.
<u>The principles are given below:</u>
- Unless the components throughout the flow stream become greater than the ports or even the gaps throughout the filter layer, those holes would be filled as either a result of economic detection.
- The much more common element of filtration would be the use of gravity to extract a combination.
- Broadcast interception or interference.
- Inertial influence.
- Sieving seems to be an excellent method to distinguish particulates.
Answer:
#Initialise a tuple
team_names = ('Rockets','Raptors','Warriors','Celtics')
print(team_names[0])
print(team_names[1])
print(team_names[2])
print(team_names[3])
Explanation:
The Python code illustrates or printed out the tuple team names at the end of a season.
The code displayed is a function that will display these teams as an output from the program.
Answer:
Tension in cable BE= 196.2 N
Reactions A and D both are 73.575 N
Explanation:
The free body diagram is as attached sketch. At equilibrium, sum of forces along y axis will be 0 hence
hence

Therefore, tension in the cable, 
Taking moments about point A, with clockwise moments as positive while anticlockwise moments as negative then



Similarly,


Therefore, both reactions at A and D are 73.575 N
Answer:
Racking is the term used for when buildings tilt as their structural components are forced out of plumb. This is most commonly caused by wind forces exerting horizontal pressure, but it can also be caused by seismic stress, thermal expansion or contraction, and so on.
Explanation:
Answer:
24.72 kwh
Explanation:
Electric energy=potential energy=mgz where m is mass, g is acceleration due to gravity and z is the elevation.
Substituting the given values while taking g as 9.81 and dividing by 3600 to convert to per hour we obtain
PE=(108*9.81*84)/3600=24.72 kWh