Answer:
patient receiving drug 25 MCG/minute
Explanation:
given data
infusing = 15 ml/hr
drug = 50 mg
D5W = 500 ml
to find out
How many MCG/minute
solution
we know infusing rate is 15 ml/hr = 0.25 ml/min
so 0.25 ml drug content = 50 /500 × 0.25
0.25 ml drug content = 0.025 mg
so here
rate of drug will be 0.025 mg
rate of drug = 0.025 mg = 25 ×
gm/min
rate of drug = 25 MCG/minute
so patient receiving drug 25 MCG/minute
Answer:
theres is many states of chemical change but its not exaclty the same as physical the appearence might change alittle but chemical like frying a egg is a chemical change because a change of materials into another, new materials with different properties and one or more than one new substances are formed and the subtance changeing or the materials can show chemical changed happened you cant always see it but touching too like heat energy can show a chemical change
Explanation:
i hope this helps and keep ur grades up :)
Answer:
Explanation:
(b) The initial velocity is added to that due to acceleration by gravity. The velocity is increased linearly by gravity at the rate of 9.8 m/s². The average velocity of the pebble will be its velocity halfway through the 2-second time period.* That is, it will be ...
4 m/s + (9.8 m/s²)(2 s)/2 = 13.8 m/s . . . . average velocity
__
(a) The distance covered in 2 seconds at an average velocity of 13.8 m/s is ...
d = vt
d = (13.8 m/s)(2 s) = 27.6 m
The water is about 27.6 m below ground.
_____
* We have chosen to make use of the fact that the velocity curve is linear, so the average velocity is half the sum of initial and final velocities:
vAvg = (vInit + vFinal)/2 = (vInit + (vInit +at))/2 = vInit +at/2
__
If you work this in a straightforward way, you would find distance as the integral of velocity, then find average velocity from the distance and time.

Answer:
Tension of the wire(T) = 169 N
Explanation:
Given:
f = 65Hz
Length of the piano wire (L) = 2 m
Mass density = 5.0 g/m² = 0.005 kg/m²
Find:
Tension of the wire(T)
Computation:
f = v / λ
65 = v / 2L
65 = v /(2)(2)
v = 260 m/s
T = v² (m/l)
T = (260)²(0.005/2)
T = 169 N
Tension of the wire(T) = 169 N