Answer:
1 st question: Control variable
2nd question: random variable
3rd question: if the two objects are dropped from the same height they will hit the ground at the same time
Answer:
T/√8
Explanation:
From Kepler's law, T² ∝ R³ where T = period of planet and R = radius of planet.
For planet A, period = T and radius = 2R.
For planet B, period = T' and radius = R.
So, T²/R³ = k
So, T²/(2R)³ = T'²/R³
T'² = T²R³/(2R)³
T'² = T²/8
T' = T/√8
So, the number of hours it takes Planet B to complete one revolution around the star is T/√8
Kinetic energy = momentum^2 / 2 x mass
Mass = (momentum^2/ Kinetic energy) / 2
Mass = (25^2 / 275) / 2
Mass = 1.136 kg.
momentum = mass x velocity
velocity = mass / momentum
velocity = 1.136 / 25
velocity = 0.04544 m/s