Answer:
accelerate in the direction in which the electric field is pointing.
Explanation:
The positive charge feels a force in the same direction as the electric field
F=Eq
F and E are vectors, q is a scalar
(if it were a negative charge the force would be in the opposite direction)
that force will produce an acceleration in the same direction, that acceleration will cause the particle to move in the same direction, ie the direction of the electric field.
Answer:
Δy= 5,075 10⁻⁶ m
Explanation:
The expression that describes the interference phenomenon is
d sin θ = (m + ½) λ
As the observation is on a distant screen
tan θ = y / x
tan θ= sin θ/cos θ
As in ethanes I will experience the separation of the vines is small and the distance to the big screen
tan θ = sin θ
Let's replace
d y / x = (m + ½) λ
The width of a bright stripe at the difference in distance
y₁ = (m + ½) λ x / d
m = 1
y₁ = 3/2 λ x / d
Let's use m = 1, we look for the following interference,
m = 2
y₂ = (2+ ½) λ x / d
The distance to the screen is constant x₁ = x₂ = x₀
The width of the bright stripe is
Δy = λ x / d (5/2 -3/2)
Δy = 630 10⁻⁹ 2.90 /0.360 10⁻³ (1)
Δy= 5,075 10⁻⁶ m
Answer: 1477.78 N
Explanation:
Let's assume that the cross sectional area of the smaller piston be A1
let's also assume the cross sectional area of the larger piston be A2
We assume the force applied to the smaller piston be F1
We also assume the force applied to the larger piston be F2
we then use the formula
F1/A1 = F2/A2
From our question,
The radius of the smaller piston is 5 cm = 0.05 m
The radius of the larger piston is 15 cm = 0.15 m
The force of the larger piston is 13300 N
The force of the smaller piston is unknown = F
A1 = πr² = 3.142 * 0.05² = 0.007855 m²
A2 = πr² = 3.142 * 0.15² = 0.070695 m²
F1/0.007855 = 13300/0.070695
F1 = (13300 * 0.007855) / 0.070695
F1 = 104.4715 / 0.070695
F1 = 1477.78 N
Thus, the force the compressed air must exert is 1477.78 N