Newton’s first law is commonly stated as:
An object at rest stays at rest and an object in motion stays in motion.
However, this is missing an important element related to forces. We could expand it by stating:
An object at rest stays at rest and an object in motion stays in motion at a constant speed and direction unless acted upon by an unbalanced force.
By the time Newton came along, the prevailing theory of motion—formulated by Aristotle—was nearly two thousand years old. It stated that if an object is moving, some sort of force is required to keep it moving. Unless that moving thing is being pushed or pulled, it will simply slow down or stop. Right?
This, of course, is not true. In the absence of any forces, no force is required to keep an object moving. An object (such as a ball) tossed in the earth’s atmosphere slows down because of air resistance (a force). An object’s velocity will only remain constant in the absence of any forces or if the forces that act on it cancel each other out, i.e. the net force adds up to zero. This is often referred to as equilibrium. The falling ball will reach a terminal velocity (that stays constant) once the force of air resistance equals the force of gravity.
Hope this help
A displacement is a vector quantity that takes into account the shortest distance from the starting point to the endpoint.
The given above gave a time interval in minutes which needs to be converted to seconds. Given that each minute is 60 seconds, 5 minutes equal 300 seconds. To determine the distance, multiply time with speed. The product is 225 m.
Thus, the displacement is 225 m.
Answer:
The appropriate response is "
". A further explanation is described below.
Explanation:
The torque (
) produced by the force on the dam will be:
⇒ 
On applying integration both sides, we get
⇒ 
⇒ 
⇒ ![=pgL[\frac{h^3}{2} -\frac{h^3}{3} ]](https://tex.z-dn.net/?f=%3DpgL%5B%5Cfrac%7Bh%5E3%7D%7B2%7D%20-%5Cfrac%7Bh%5E3%7D%7B3%7D%20%5D)
⇒ 
Answer:
when the ground is very hot and the air is cool.
Explanation:
The hot earth warms a layer of air right above the ground. Light is refracted as it passes through the cool air and onto the hot air sheet (bent). A coating of very warm air near the earth bends the light from the sky almost into a U-shaped bend.
Heat required to change the phase of ice is given by
Q = m* L
here
m = mass of ice
L = latent heat of fusion
now we have
m = 45 kg
L = 334 KJ/kg
now by using above formula


In KJ we can convert this as

so the correct answer is D option