Answer:
Ammonia is limiting reactant
Amount of oxygen left = 0.035 mol
Explanation:
Masa of ammonia = 2.00 g
Mass of oxygen = 4.00 g
Which is limiting reactant = ?
Balance chemical equation:
4NH₃ + 3O₂ → 2N₂ + 6H₂O
Number of moles of ammonia:
Number of moles = mass/molar mass
Number of moles = 2.00 g/ 17 g/mol
Number of moles = 0.12 mol
Number of moles of oxygen:
Number of moles = mass/molar mass
Number of moles = 4.00 g/ 32 g/mol
Number of moles = 0.125 mol
Now we will compare the moles of ammonia and oxygen with water and nitrogen.
NH₃ : N₂
4 : 2
0.12 : 2/4×0.12 = 0.06
NH₃ : H₂O
4 : 6
0.12 : 6/4×0.12 = 0.18
O₂ : N₂
3 : 2
0.125 : 2/3×0.125 = 0.08
O₂ : H₂O
3 : 6
0.125 : 6/3×0.125 = 0.25
The number of moles of water and nitrogen formed by ammonia are less thus ammonia will be limiting reactant.
Amount of oxygen left:
NH₃ : O₂
4 : 3
0.12 : 3/4×0.12= 0.09
Amount of oxygen react = 0.09 mol
Amount of oxygen left = 0.125 - 0.09 = 0.035 mol
Answer:
SO2
Explanation:
Dipole-Dipole exist between parmanent dipoles in a molecule. THis means that molecule must have a parmanent dipole moment in it.
Example - HCl
Hydrogen bonding is an attraction between lone pair of an electronegative element and H atom of same or different molecule. H must be covalantly attached to either F, N or O.
Example - H2O
Among the molecules given in the list only SO2 and H2O exihibits parmanent moment. As BCl3 , CBr4 and H2 are symmetric compounds.
Since, SO2 cannot exihibit H- bonding only dipole-dipole forces as its strongest intermolecular force.
Answer:
[ Ga ] = 1.163 E-8 Kg/m³
Explanation:
- %wt = [(mass Ga)/(mass Si)]*100 = 5.0 E-7 %
⇒ 5.0 E-9 = m Ga/m Si
assuming: m Si = 100 g = 0.1 Kg
⇒ m Ga = (5.0 E-9)*(0.1 Kg) = 5 E-10 Kg
∴ density (δ) Si = 2.33 Kg/m³
⇒ Volume Si = (0.1 Kg)*(m³/2.33 Kg) = 0.043 m³
⇒ [ Ga ] = (5 E-10 Kg)/(0.043 m³) = 1.163 E-8 Kg/m³
⇒ [ Ga ] =
<u>Answer:</u> The mass of 1 mole of lithium is 6.941 grams.
<u>Explanation:</u>
To calculate the mass of a compound or element, we use the formula used to calculate the number of moles:

Where,
Number of moles of lithium = 1 mole
Given mass of lithium = ? g
Molar mass of lithium = 6.941 g/mol
Putting value in above equation, we get:

Hence, the mass of 1 mole of lithium is 6.941 grams.
Answer:
All alkali and alkaline earth metals dissolves in water to form alkaline solutions.
Explanation:
The alkali metals are found in group one of the periodic table while the alkaline earth metals are found in group 2. These two groups of elements are quite reactive and they react very well with air and water. All the elements in the two groups react with water to give rise to alkaline solutions; solutions whose pH range from 8 to 14.