Answer:
There are 1.05 x 10²⁴ molecules in 48.6 g N₂
Explanation:
1 mol of N₂ has a mass of (14 g * 2) 28 g.
Then, 48.6 g of N₂ will be equal to (48.6 g *(1 mol/ 28 g)) 1.74 mol.
Since there are 6.022 x 10²³ molecules in 1 mol N₂, there will be
(1.74 mol *( 6.022 x 10²³ / 1 mol)) 1.05 x 10²⁴ molecules in 1.74 mol N₂ (or 48. 6 g N₂).
Answer:
KOH contains only one K, so a mole of KOH contains one mole of K. How many atoms of K are in 1 mole of KOH? There are 6.022 × 1023 atoms of potassium in every mole of potassium. Since one mole of KOH contains one mole of K, the answer is 6.022×1023 atoms of K.
Explanation:
Answer:
alright
Explanation:
Hess law is the enthalpy change for a reaction that is carried out in a series of steps is equal to the sum of the enthalpy changes for the individual steps. Consistent with the law of conservation of energy. Starting and final conditions must be the same.
Rutherford's atomic structure model was revolutionary. Contrary to J.J. Thompson's "plum pudding" model (which consisted of a solid, even mixture of protons and electrons), Rutherford's model consisted of one small, positively charged, dense nucleus, a layer of empty space, and a layer of negatively charged electrons. He came to this conclusion through his gold-foil experiment. He shot a ray of alpha particles towards the thin gold foil, and to Rutherford's surprise, some of the rays reflected back instead of going straight through the foil as he originally thought.